A novel Z-scheme coated composite, Er:YAlO@Ni(FeGa)O-Au-BiVO, was designed for sonocatalytic degradation of sulfanilamide and fabricated by sol-hydrothermal and calcination methods. The prepared sample was characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectra (DRS), fourier transform infrared (FT-IR) spectra, Raman spectra and photoluminescence (PL) spectra. In Er:YAlO@Ni(FeGa)O-Au-BiVO, Ni(FeGa)O and BiVO form a Z-scheme sonocatalytic system, Er:YAlO as an up-conversion luminescence agent (from visible-light to ultraviolet-light) provides the ultraviolet-light for satisfying the energy demand of wide band-gap Ni(FeGa)O and Au nanoparticles as co-catalyst forms more active sites to enrich electrons. Also, Au nanoparticles as conductive channels promotes the electrons (e) from conduction band of BiVO to transfer to valence band of Ni(FeGa)O. Due to the characteristics of valence state diversity, the Fe and V constitute a redox reaction recombination system, which can also push electrons (e) on conduction band of BiVO to quickly transfer to valence band of Ni(FeGa)O. The sonocatalytic activity of Er:YAlO@Ni(FeGa)O-Au-BiVO nanocomposite was detected through degradation of sulfanilamide under ultrasonic irradiation. A high sonocatalytic degradation ratio (95.64%) of sulfanilamide can be obtained when the conditions of 10.00 mg/L sulfanilamide, 1.00 g/L Er:YAlO@Ni(FeGa)O-Au-BiVO, 300 min ultrasonic irradiation and 100 mL total volume were adopted. Some factors such as ultrasonic irradiation time and cycle number on the sonocatalytic degradation efficiency are also investigated by using TOC and UV-vis spectroscopy. Subsequently, the effects of hydroxyl radicals (OH) and hole scavengers were investigated to elaborate the mechanism. The researches show that the prepared Z-scheme Er:YAlO@Ni(FeGa)O-Au-BiVO coated composite displayed an excellent sonocatalytic activity in degradation of sulfanilamide under ultrasonic irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2018.03.010 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India.
This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 420, C.P. 02128, Mexico City, Mexico.
In this study, ZnO was doped and co-doped with rhodium and tungsten to assess the impact of these transition metals on the sonocatalytic degradation of reactive black 5 azo dye (RB-5). Structural analysis revealed that doping ZnO with 1% Rh and W does not alter its wurtzite hexagonal structure, although minor changes in cell parameters were observed due to differences in electronic density. Interestingly, co-doping resulted in lower degradation efficiency than single doping, with W-ZnO emerging as the most effective catalyst, achieving 100% RB-5 degradation within 60 min, likely due to a higher density of oxygen vacancies and hydroxyl groups.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China. Electronic address:
Artificially synthesized nanozymes exhibit enzymatic activity similar to that of natural enzymes. However, in the complex tumor microenvironment, their diversity and catalytic activity show significant variations, limiting their effectiveness in catalytic therapy. Developing artificial enzymes with multiple enzymatic activities and spatiotemporal controllable catalytic abilities is of great clinical significance.
View Article and Find Full Text PDFMolecules
November 2024
College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China.
Cu(II) and Mn(II) coordination polymers [Cu(ttpa)(sub)] ( or ) and {[Mn(ttpa)(nip)(HO)]·3HO} ( or ) (ttpa = tris(4-(1,2,4-triazol-1-yl)phenyl)amine, Hsub = suberic acid, nip = 5-nitroisophthalicate) were hydrothermally prepared and the structures were characterized. exhibited a 2D (4,4) network based on [Cu(COO)] dimers with upper and lower dangled ttpa ligands and a 2D → 3D polythreaded network. showed a 2D (4,4) network with dangled uncoordinated triazole rings from ttpa ligands and nitro groups from nip ligands and a 2D → 3D polythreaded network.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
School of Pharmacy, Guangdong Medical University, Dongguan 523000, China. Electronic address:
As an emerging therapeutic method, the application of sonodynamic therapy (SDT) is hindered by its intrinsic unsatisfactory efficiency, the tumor hypoxia and low tumor specificity. Here, we reported the design of a tumor-targeting multifunctional nanodrug for O-generation/O-economization dually enhanced SDT/chemodynamic therapy (CDT) combination therapy. After the co-encapsulation of sonosensitizer indocyanine green (ICG) and oxidative phosphorylation inhibitor metformin (Met) into hollow MnO (H-MnO) nanoparticles, ICG/Met@H-MnO@MPN-FA (IMMMF) was conveniently prepared through the formation of metal-phenolic networks (MPNs) between Fe and folic acid (FA) immobilized tannic acid (TA, TA-FA) onto its surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!