Ultrasound assisted synthesis of WO-ZnO nanocomposites for brilliant blue dye degradation.

Ultrason Sonochem

Department of Physics, Savitribai Phule Pune University, Pune 411007, India. Electronic address:

Published: July 2018

The present work deals with the preparation of WO and WO-ZnO nanocomposites in presence of ultrasonic irradiation, and its use in the sonocatalytic degradation of brilliant blue dye. WO-ZnO nanocomposite is prepared using one step in-situ ultrasound assisted method. The successfully prepared WO and WO-ZnO nanocomposites were characterized using different characterization techniques such as XRD, Raman, BET, FE-SEM and EDS. The XRD pattern reveals that the formation of monoclinic and hexagonal crystal structures of WO and ZnO respectively. BET study shows that WO-ZnO nanocomposite have maximum surface area than that of the WO. EDS study confirms the formation of WO-ZnO nanocomposites. Further the use of the prepared WO and WO-ZnO nanocomposites as a sonocatalyst for the degradation of brilliant blue dye. The rate constant (k) was evaluated as a function of the initial concentration of brilliant blue dye. It is found that WO-ZnO nanocomposites exhibits maximum sonocatalytic activity as compared to WO photocatalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2018.02.052DOI Listing

Publication Analysis

Top Keywords

wo-zno nanocomposites
24
brilliant blue
16
blue dye
16
ultrasound assisted
8
wo-zno
8
degradation brilliant
8
dye wo-zno
8
wo-zno nanocomposite
8
prepared wo-zno
8
nanocomposites
6

Similar Publications

An on-site, sensitive, and cost-effective method for determining aflatoxin B1 (AFB1) in rice samples is proposed, combining magnetic solid phase extraction (MSPE) and time-resolved fluorescence immunochromatography (TRFICA) techniques. Cost-effective rice husks were carbonized and combined with nanomaterials to make magnetic nanocomposites that acted as effective adsorbents in MSPE. Under optimal conditions, the entire process was completed in 15 min with a visual detection limit of 0.

View Article and Find Full Text PDF

Here, a high molecular weight polysaccharide preparation from Ophiocordyceps gracilis was utilized as a stabilizer and dispersant to create nanocomposites based on selenium nanoparticles (GSP-1a-SeNPs). The NPs showed the highest stability at a selenium/polysaccharide mass ratio of 1:1, with no significant change after 28 days of storage at 4 °C. The NPs exhibited a symmetrical spheroid structure with an average diameter of 85.

View Article and Find Full Text PDF

Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.

View Article and Find Full Text PDF

We report the fabrication and characterization of a Bi(III) oxide/polypyrrole (BiO/Ppy) nanocomposite thin film optoelectronic photodetector synthesized by a simple one-pot method. The nanocomposite consists of spherical BiO nanoparticles embedded in a Ppy matrix, forming a porous structure with a high surface area. The XRD analysis reveals that the BiO nanoparticles have a poly-crystalline nature with a crystal size of 40 nm and an optical bandgap of 2.

View Article and Find Full Text PDF

Rational Regulation of High-Entropy Perovskite Oxides through Hole Doping for Efficient Oxygen Electrocatalysis.

ACS Appl Mater Interfaces

January 2025

Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.

Due to the high configuration entropy, unique atomic arrangement, and electronic structures, high-entropy materials are being actively pursued as bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable zinc-air batteries (ZABs). However, a relevant strategy to enhance the catalytic activity of high-entropy materials is still lacking. Herein, a hole doping strategy has been employed to enable the high-entropy perovskite La(CrMnFeCoNi)O to effectively catalyze the ORR and OER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!