Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

Ageing Res Rev

Wuxi Medical School, Jiangnan University, Jiangsu, 214122, Wuxi, China. Electronic address:

Published: August 2018

Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2018.04.004DOI Listing

Publication Analysis

Top Keywords

microbial metabolites
16
gut microbiota
12
microbiota microbial
8
metabolites parkinson's
8
parkinson's disease
8
nervous system
8
microbiota-gut-brain axis
8
microbiota-targeted interventions
8
microbial
6
gut
5

Similar Publications

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.

View Article and Find Full Text PDF

The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.

View Article and Find Full Text PDF

Bacterial indole-3-propionic acid inhibits macrophage IL-1β production through targeting methionine metabolism.

Sci China Life Sci

January 2025

State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.

The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.

View Article and Find Full Text PDF

Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity.

View Article and Find Full Text PDF

Studies have shown that the presence of allergens, including insecticides, significantly increases the risk of occupational allergic diseases among solar greenhouse workers. However, no studies have yet investigated the relationship between organophosphorus pesticide use by greenhouse workers and allergic diseases, and the role of the flora in this context remains unclear. Therefore, this study aimed to investigate the relationship between combined exposure to organophosphorus pesticides (OPs) and Glyphosate (GLY) and changes in total immunoglobulin E (IgE) levels, as well as to analyze the role of nasal flora in allergic status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!