There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 μg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 μg/L or higher. Only at 5-10 μg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 μg/L and the corresponding no observed effect concentration 0.1 μg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2018.04.029 | DOI Listing |
Brief Bioinform
November 2024
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.
The role of cell-cell communications (CCCs) is increasingly recognized as being important to differentiation, invasion, metastasis, and drug resistance in tumoral tissues. Developing CCC inference methods using traditional experimental methods are time-consuming, labor-intensive, cannot handle large amounts of data. To facilitate inference of CCCs, we proposed a computational framework, called CellMsg, which involves two primary steps: identifying ligand-receptor interactions (LRIs) and measuring the strength of LRIs-mediated CCCs.
View Article and Find Full Text PDFMycoses
January 2025
Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
Background: Accurate identification of Fusarium species requires molecular identification. Treating fusariosis is challenging due to widespread antifungal resistance, high rates of treatment failure, and insufficient information relating antifungal susceptibility to the clinical outcome. Despite recent outbreaks in Mexico, there is limited information on epidemiology and antifungal susceptibility testing (AST).
View Article and Find Full Text PDFDiscov Oncol
January 2025
School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
Background: Prostate cancer (PCa) ranks as the second most common disease among men and the fourth most prevalent cancer worldwide. Enhanced glycolysis and excessive lactate secretion are recognized as critical factors driving the progression of various cancers. This study systematically investigated the research trends associated with glycolysis in PCa through bibliometric analysis.
View Article and Find Full Text PDFFolia Microbiol (Praha)
January 2025
Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
Medical students are exposed to the hospital environment and patients during their studies, increasing the risk of exposure to virulent and antibiotic-resistant isolates of Staphylococcus aureus. The aim of the study is to determine the prevalence of Staphylococcus aureus among medical students who have varying levels of exposure to the hospital environment to provide valuable insights into the risk of colonization and transmission. Nasal swabs and fingerprints were obtained and cultured on a selective medium for staphylococci.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.
Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!