Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease.

Methods

Division of Integrative Systems Medicine and Digestive Disease, Faculty of Medicine, Imperial College London, United Kingdom. Electronic address:

Published: October 2018

There is an ever-increasing recognition that bile acids are not purely simple surfactant molecules that aid in lipid digestion, but are a family of molecules contributing to a diverse range of key systemic functions in the host. It is now also understood that the specific composition of the bile acid milieu within the host is related to the expression and activity of bacterially-derived enzymes within the gastrointestinal tract, as such creating a direct link between the physiology of the host and the gut microbiota. Coupled to the knowledge that perturbation of the structure and/or function of the gut microbiota may contribute to the pathogenesis of a range of diseases, there is a high level of interest in the potential for manipulation of the gut microbiota-host bile acid axis as a novel approach to therapeutics. Much of the growing understanding of the biology of this area reflects the recent development and refinement of a range of novel techniques; this study applies a number of those techniques to the analysis of human samples, aiming to illustrate their strengths, drawbacks and biological significance at all stages. Specifically, we used microbial profiling (using 16S rRNA gene sequencing), bile acid profiling (using liquid chromatography-mass spectrometry), bsh and baiCD qPCR, and a BSH enzyme activity assay to demonstrate differences in the gut microbiota and bile metabolism in stool samples from healthy and antibiotic-exposed individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347095PMC
http://dx.doi.org/10.1016/j.ymeth.2018.04.028DOI Listing

Publication Analysis

Top Keywords

bile acid
12
gut microbiota
12
gut
5
bile
5
functional microbiomics
4
microbiomics evaluation
4
evaluation gut
4
gut microbiota-bile
4
acid
4
microbiota-bile acid
4

Similar Publications

Intestinal epithelial cell NCoR deficiency ameliorates obesity and metabolic syndrome.

Acta Pharm Sin B

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.

View Article and Find Full Text PDF

Lactopontin (LPN) is an important milk protein with the potential to improve bone health; however, its specific effects have not been determined. This study aims to investigate the effects of LPN on early bone growth and development. 3 week-old SD rats ( = 32) were assigned to the control group, whey protein concentration (WPC) group, LPN-L (low-dose LPN) group, and LPN-H (high-dose LPN) group, with intragastric administration of deionized water, 65.

View Article and Find Full Text PDF

Functional Characterization and In Silico Prediction Tools Improve the Pathogenicity Prediction of Novel Bile Acid Transporter Variants.

Clin Genet

January 2025

Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China.

The pathogenicity of cholestatic liver diseases (CLDs) remains insufficiently characterized, hindering definitive diagnosis and timely treatment. The aim of this study was to improve the pathogenicity prediction of novel bile acid (BA) transporter variants in patients with CLDs. We analyzed the clinical characteristics and genetic profiles of a CLD cohort (n = 57) using multiple in silico tools and in vitro functional assays.

View Article and Find Full Text PDF

Gut bacteria Prevotellaceae related lithocholic acid metabolism promotes colonic inflammation.

J Transl Med

January 2025

Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.

Background: The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis.

Methods: Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS).

View Article and Find Full Text PDF

[Comparative study on metabolites in rat liver microsomes, urine, feces and bile between Shuganning Injection and Scutellariae Radix extract].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Pharmaceutical Sciences, Guizhou Medical University Guiyang 550004, China Engineering Research Center for Development and Application of Ethnic Medicine and Traditional Chinese Medicine, Guizhou Medical University Guiyang 550004, China.

This study aims to compare the metabolic differences of baicalin and its analogues between Shuganning Injection and Scutellariae Radix extract. Twelve SD rats were randomly divided into a Shuganning Injection group and a Scutellariae Radix extract group, with 6 rats in each group. Their liver microsomes were incubated with the drugs, and then the samples were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!