Xylooligosaccharides display interesting prebiotic effects on human health. The endoxylanase Xys1Δ, from Streptomyces halstedii JM8, was immobilized and stabilized on glyoxyl-agarose beads by multipoint covalent attachment using a novel strategy based on surface coating with a multilayer of polymers. The optimal modification consisted of surface coating with a bilayer formed by a layer of derived dextran polymers and a layer of polyethylenimine. The optimized biocatalyst was 550-fold more stable than one-point covalent immobilized Xys1Δ (at 70 °C, pH 7). This biocatalyst was tested for the production of xylooligosaccharides from soluble xylans from various sources. Hydrolysis of beechwood, wheat straw and corncob xylans was 93% in 4 h, 44% in 5 h and 100% in 1 h, respectively. Maximum values of xylooligosaccharides were found for beechwood at 20.6 mg/mL, wheat at 12.5 mg/mL and corncob at 30.4 mg/mL. The optimized biocatalyst was reused for 15 reaction cycles without affecting its catalytic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2018.04.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!