Increasing evidence suggests that the mitochondrial outer membrane protein mitoNEET is a key regulator of energy metabolism, iron homeostasis, and production of reactive oxygen species in mitochondria. Previously, we reported that mitoNEET is a redox enzyme that catalyzes electron transfer from the reduced flavin mononucleotide (FMNH) to oxygen or ubiquinone via its unique [2Fe-2S] clusters. Here, we explore the reduction and oxidation kinetics of the mitoNEET [2Fe-2S] clusters under anaerobic and aerobic conditions. We find that the mitoNEET [2Fe-2S] clusters are rapidly reduced by a catalytic amount of FMNH which is reduced by flavin reductase and an equivalent amount of NADH under anaerobic conditions. When the reduced mitoNEET [2Fe-2S] clusters are exposed to air, the [2Fe-2S] clusters are slowly oxidized by oxygen at a rate constant of about 6.0 M s. Compared with oxygen, ubiquinone-2 has a much higher activity to oxidize the reduced mitoNEET [2Fe-2S] clusters at a rate constant of about 3.0 × 10 M s under anaerobic conditions. Under aerobic conditions, the mitoNEET [2Fe-2S] clusters can still be reduced by FMNH in the presence of flavin reductase and excess NADH. However, when NADH is completely consumed, the reduced mitoNEET [2Fe-2S] clusters are gradually oxidized by oxygen. Addition of ubiquinone-2 also rapidly oxidizes the pre-reduced mitoNEET [2Fe-2S] clusters and effectively prevents the FMNH-mediated reduction of the mitoNEET [2Fe-2S] clusters under aerobic conditions. The results suggest that ubiquinone may act as an intrinsic oxidant of the reduced mitoNEET [2Fe-2S] clusters in mitochondria under aerobic and anaerobic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.569 | DOI Listing |
Nat Chem Biol
January 2025
Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
Nat Chem Biol
January 2025
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
Iron-sulfur clusters are essential metallocofactors synthesized by multiprotein machineries via an unclear multistep process. Here we report a step-by-step dissection of the [2Fe-2S] cluster assembly process by the Escherichia coli iron-sulfur cluster (ISC) assembly machinery using an in vitro reconstituted system and a combination of biochemical and spectroscopic techniques. We show that this process is initiated by iron binding to the scaffold protein IscU, which triggers persulfide insertion by the cysteine desulfurase IscS upon the formation of a complex with IscU.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.
This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels.
View Article and Find Full Text PDFNature
January 2025
Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.
The oxygen-sensitive molybdenum-dependent nitrogenase of Azotobacter vinelandii is protected from oxidative damage by a reversible 'switch-off' mechanism. It forms a complex with a small ferredoxin, FeSII (ref. ) or the 'Shethna protein II', which acts as an O sensor and associates with the two component proteins of nitrogenase when its [2Fe:2S] cluster becomes oxidized.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!