AI Article Synopsis

  • The study focuses on the TGF-β1/Smad3 signaling pathway and its role in reducing brain damage in rats experiencing cerebral ischemia and oxygen-glucose deprivation.
  • TGF-β1 treatment led to smaller areas of brain infarction and lower levels of apoptosis in affected cells compared to untreated controls, while inhibiting TGF-β1 resulted in larger infarcts.
  • Overall, the findings suggest that TGF-β1 and Smad3 could have protective effects against ischemic stroke by promoting cell survival and minimizing brain injury.

Article Abstract

We investigated the transforming growth factor-b1 (TGF-β1)/Smad3 signaling pathway in rats with cerebral ischemia and oxygen-glucose-deprived (OGD) microglia. Cerebral ischemia is a clinical condition that occurs when insufficient blood flows to the brain to maintain metabolic activity. TGF-β1 is a well-known functional peptide that regulates cell differentiation, migration, proliferation, and apoptosis. In the current study, we determined the infarct size and TGF-β1/Smad3 protein expression in stroke-induced rats. Apoptosis and TGF-β1/Smad3 mRNA and protein expression were determined in transfected OGD human microglial cells. TGF-β1 treatment resulted in smaller infarct regions than in control cells, whereas TGF-β1 inhibitor treatment resulted in larger infarcts. The TGF-β1-treated groups showed substantial TGF-β1 and Smad3 expression by immunofluorescence compared to the controls. Apoptosis was significantly reduced in TGF-β1- and Smad3-transfected cells, and an increased rate of apoptosis was observed in Smad3 or TGF-β1 siRNA-transfected cells. TGF-β1 and Smad3 mRNA and protein expression increased following TGF-β1 and Smad3 transfection. Taken together, our experimental results show that Smad3 and TGF-β1 play a protective role against ischemic stroke, as demonstrated by the reduced infarct size. Smad3 and TGF-β1 expression was increased in cells transfected with TGF-β1, whereas Smad3 and TGF-β1 expression was increased in TGF-β1 inhibitor-transfected cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.04.113DOI Listing

Publication Analysis

Top Keywords

tgf-β1 smad3
16
smad3 tgf-β1
16
cerebral ischemia
12
tgf-β1
12
protein expression
12
cells tgf-β1
12
expression increased
12
tgf-β1/smad3 signaling
8
signaling pathway
8
oxygen-glucose-deprived ogd
8

Similar Publications

Background/purpose: Oral squamous cell carcinoma (OSCC) is a common malignancy often associated with poor prognosis due to chemoresistance. In this study, we investigated whether arecoline, a major alkaloid in betel nuts, can stimulate aldo-keto reductase family 1 member B10 (AKR1B10) levels in OSCC, promoting cancer stemness and leading to resistance to cisplatin (CDDP)-based chemotherapy.

Materials And Methods: Gain- and Loss- of AKR1B10 functions were analyzed using WB and q-PCR of OSCC cells.

View Article and Find Full Text PDF

Background: This study aimed to investigate the effects of ginseng non-edible callus-derived extracellular vesicle (GNEV) on skin regeneration, particularly focusing on its impact on proliferation and migration in human dermal fibroblast (HDF).

Methods: GNEV was isolated from ginseng non-edible callus using sequential filtration and size exclusion chromatography (SEC). The extracellular vesicle was characterized using nanoparticle tracking analysis (NTA).

View Article and Find Full Text PDF

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!