Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exposure to aluminum (Al) inhibits bone formation, the principal mechanism possibly due to oxidative stress. However, little data is available that establishes the precise relationship. In this study, Wistar rats were exposed to 0 (GC), 0.4 (GL), 0.8 (GM) or 1.6 (GH) mg/L aluminum trichloride (AlCl) in drinking water for 90 days, respectively. The concentrations of Al in serum and bone, serum markers of bone metabolism, bone mineral density (BMD) and body weight were measured. Histological changes within femurs were observed by H&E, ALP, and TRACP staining. Oxidative stress markers and JNK apoptotic pathway were detected in bone. The results indicate that AlCl exposure decreased BMD, numbers of ALP-positive osteoblasts and serum levels of bone formation markers (B-ALP, PICP and BGP), and caused damaged to the trabecular structure. Serum levels of bone resorption markers (TRACP-5b, CTX-I) and numbers of TRACP-positive osteoclasts increased in GL, but conversely, they decreased in GM and GH. In addition, AlCl caused oxidative stress, up-regulated expression of c-Jun and pro-apoptotic factors with increased p-JNK/JNK ratio and down-regulated expression of anti-apoptotic factor Bcl-2 in bone. Taken together, these results indicate that bone impairment caused by AlCl is associated with activation of the oxidative stress-mediated JNK apoptotic pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2018.04.057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!