Selenium (Se) is an essential nutrient for many organisms, including microbe, animal and human, but the Se uptake and transformation mechanisms and physiological roles in plant still are controversial until now. Se could improve the growth and tolerance of plant at an appropriate le-vel, but could be toxic at higher levels. Research concerning Se uptake and metabolism in plant were promoted by Se biofortification and Se phytoremediation induced by the issues of Se deficiency in food and Se pollution in special areas. Recently, the results of Se uptake and transformation in plant have indicated that there are significant differences of Se accumulation and physiological roles in various plants and significant influence of soil conditions on Se uptake of plant. In addition, the process of Se metabolism in Se hyperaccumulators and its regulation were revealed gradually with the studies on improvement of Se uptake in plant. According to the results of Se biofortification in crop and Se phytoremediation so far, we summarized the advances in the studies with the reference to Se distribution in environment, the detail process of Se uptake, key regulators of transformation and its physiological roles in plant. We hope this can provide a novel insight to further research upon Se in plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201612.037 | DOI Listing |
Adv Exp Med Biol
January 2025
Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.
Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.
View Article and Find Full Text PDFSports Med
January 2025
Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.
Background: Swimming performance depends on a wide variety of factors; however, the interaction between these factors and their importance varies between events. In sprint events, the characterized pacing underlines its specific development, as swimmers must achieve the highest possible speed while sustaining it to the greatest extent possible.
Objectives: The aim of this review was to identify the key factors underlying sprint swimming performance and to provide in-depth and practical evidence-based information to optimize performance.
Appl Microbiol Biotechnol
January 2025
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!