Cluster of differentiation 97 (CD97) is a member of the epidermal growth factor seven-transmembrane family belonging to the class B G protein-coupled receptors (GPCRs). The protein affects tumor aggressiveness through its cellular ligand CD55 stimulation and exhibits adhesive properties. Studies have demonstrated the involvement of CD97 in dedifferentiation, migration, invasiveness, and metastasis of tumors. However, little information is currently available on the specific role of CD97 in hepatocellular carcinoma (HCC). Here, we have shown that CD97 up-regulation in HCCs is positively correlated with tumor metastasis. Functionally, CD97 promoted cell migration and invasion in vitro. In an in vivo mouse model, overexpression of CD97 in HCC cells led to accelerated lung metastasis. Mechanistically, CD97 cooperated with the altered regulator, GPCR kinase 6 (GRK6), to mediate GPCR desensitization and internalization. Down-regulation of GRK6 suppressed CD97 internalization and promoted CD97 expression. Integrated regulatory interactions between CD97 and GRK6 stimulated downstream matrix metalloproteinase 2/9 secretion and, consequently, HCC metastasis. Conclusion: Our collective findings support the utility of CD97 as an effective potential prognosticator and therapeutic target for HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.30068DOI Listing

Publication Analysis

Top Keywords

cd97
12
tumor aggressiveness
8
hepatocellular carcinoma
8
cd97 promotes
4
promotes tumor
4
aggressiveness traditional
4
traditional protein-coupled
4
protein-coupled receptor-mediated
4
receptor-mediated signaling
4
signaling hepatocellular
4

Similar Publications

CD97 maintains tumorigenicity of glioblastoma stem cells via mTORC2 signaling and is targeted by CAR Th9 cells.

Cell Rep Med

December 2024

The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China. Electronic address:

Glioblastoma (GBM) stem cells (GSCs) contribute to poor prognosis in patients with GBM. Identifying molecular markers is crucial for developing targeted therapies. Here, we identify cluster of differentiation 97 (CD97) as an optimal GSC surface antigen for potential targeting by chimeric antigen receptor (CAR) T cell therapy through in vitro antibody screening.

View Article and Find Full Text PDF
Article Synopsis
  • Dermal fibroblasts (DFs) from hypertrophic scars (HTSFs) show higher proliferation and motility compared to those from normal skin (NDFs), despite minor karyotype differences.
  • A detailed proteomic analysis revealed unique metabolic proteins in HTSFs that could explain their aggressive behavior and links to scarring.
  • Identified proteins related to cell growth, movement, fibrosis, and inflammation suggest potential targets for future treatments or prevention strategies for skin scarring.
View Article and Find Full Text PDF

Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1.

Cell Rep

May 2024

Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA. Electronic address:

GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a fatal malignancy of the blood and bone marrow. Leukemic stem cells (LSCs) are a rare subset of leukemic cells that promote the development and progression of AML, and eradication of LSCs is critical for effective control of this disease. Emetine is an FDA-approved antiparasitic drug with antitumor properties; however, little is known about its potential against LSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!