Cluster of differentiation 97 (CD97) is a member of the epidermal growth factor seven-transmembrane family belonging to the class B G protein-coupled receptors (GPCRs). The protein affects tumor aggressiveness through its cellular ligand CD55 stimulation and exhibits adhesive properties. Studies have demonstrated the involvement of CD97 in dedifferentiation, migration, invasiveness, and metastasis of tumors. However, little information is currently available on the specific role of CD97 in hepatocellular carcinoma (HCC). Here, we have shown that CD97 up-regulation in HCCs is positively correlated with tumor metastasis. Functionally, CD97 promoted cell migration and invasion in vitro. In an in vivo mouse model, overexpression of CD97 in HCC cells led to accelerated lung metastasis. Mechanistically, CD97 cooperated with the altered regulator, GPCR kinase 6 (GRK6), to mediate GPCR desensitization and internalization. Down-regulation of GRK6 suppressed CD97 internalization and promoted CD97 expression. Integrated regulatory interactions between CD97 and GRK6 stimulated downstream matrix metalloproteinase 2/9 secretion and, consequently, HCC metastasis. Conclusion: Our collective findings support the utility of CD97 as an effective potential prognosticator and therapeutic target for HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.30068 | DOI Listing |
Cell Rep Med
December 2024
The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China. Electronic address:
Glioblastoma (GBM) stem cells (GSCs) contribute to poor prognosis in patients with GBM. Identifying molecular markers is crucial for developing targeted therapies. Here, we identify cluster of differentiation 97 (CD97) as an optimal GSC surface antigen for potential targeting by chimeric antigen receptor (CAR) T cell therapy through in vitro antibody screening.
View Article and Find Full Text PDFBiomedicines
October 2024
Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint-Petersburg, Russia.
Cell Rep
May 2024
Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA. Electronic address:
GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133.
View Article and Find Full Text PDFCell Death Discov
April 2024
Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil.
Acute myeloid leukemia (AML) is a fatal malignancy of the blood and bone marrow. Leukemic stem cells (LSCs) are a rare subset of leukemic cells that promote the development and progression of AML, and eradication of LSCs is critical for effective control of this disease. Emetine is an FDA-approved antiparasitic drug with antitumor properties; however, little is known about its potential against LSCs.
View Article and Find Full Text PDFSci Rep
April 2024
Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University Cancer Center, 29 Xinquan Road, Fuzhou, 350001, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!