On the neuronal circuitry mediating L-DOPA-induced dyskinesia.

J Neural Transm (Vienna)

The Group for Integrative Neurophysiology and Neurotechnology, Neuronano Research Centre, Department Experimental Medical Science, Lund University, Lund, Sweden.

Published: August 2018

With the advent of rodent models of L-DOPA-induced dyskinesia (LID), a growing literature has linked molecular changes in the striatum to the development and expression of abnormal involuntary movements. Changes in information processing at the striatal level are assumed to impact on the activity of downstream basal ganglia nuclei, which in turn influence brain-wide networks, but very little is actually known about systems-level mechanisms of dyskinesia. As an aid to approach this topic, we here review the anatomical and physiological organisation of cortico-basal ganglia-thalamocortical circuits, and the changes affecting these circuits in animal models of parkinsonism and LID. We then review recent findings indicating that an abnormal cerebellar compensation plays a causal role in LID, and that structures outside of the classical motor circuits are implicated too. In summarizing the available data, we also propose hypotheses and identify important knowledge gaps worthy of further investigation. In addition to informing novel therapeutic approaches, the study of LID can provide new clues about the interplay between different brain circuits in the control of movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060876PMC
http://dx.doi.org/10.1007/s00702-018-1886-0DOI Listing

Publication Analysis

Top Keywords

l-dopa-induced dyskinesia
8
neuronal circuitry
4
circuitry mediating
4
mediating l-dopa-induced
4
dyskinesia advent
4
advent rodent
4
rodent models
4
models l-dopa-induced
4
lid
4
dyskinesia lid
4

Similar Publications

The Interaction of Histamine H and Dopamine D Receptors on Hyperkinetic Alterations in Animal Models of Parkinson's Disease.

Pharmaceuticals (Basel)

December 2024

División de Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico.

Parkinson's disease is associated with the loss of more than 40% of dopaminergic neurons in the substantia nigra pars compacta. One of the therapeutic options for restoring striatal dopamine levels is the administration of L-3,4-dihydroxyphenylalanine (L-Dopa). However, Parkinson's disease patients on long-term L-Dopa therapy often experience motor complications, such as dyskinesias.

View Article and Find Full Text PDF

Transcranial Magnetic Stimulation Attenuates Dyskinesias and FosB and c-Fos Expression in a Parkinson's Disease Model.

Brain Sci

November 2024

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.

Background/objectives: Dopamine replacement therapy for Parkinson's disease (PD) may lead to disabling incontrollable movements known as L-DOPA-induced dyskinesias. Transcranial magnetic stimulation (TMS) has been applied as non-invasive therapy to ameliorate motor symptoms and dyskinesias in PD treatment. Recent studies have shown that TMS-induced motor effects might be related to dopaminergic system modulation.

View Article and Find Full Text PDF

Differential effects of statins on the anti-dyskinetic activity of sub-anesthetic ketamine.

Neurosci Lett

January 2025

Department of Neurology, The University of Arizona, Tucson, AZ 85724, USA; Graduate Interdisciplinary Program in Neuroscience, The University of Arizona, Tucson, AZ 85724, USA; Department of Pharmacology, The University of Arizona, Tucson, AZ 85724, USA. Electronic address:

Sub-anesthetic ketamine has been demonstrated to reduce abnormal involuntary movements (AIMs) in preclinical models of L-DOPA-induced dyskinesia (LID) and retrospective Parkinson's disease (PD) case reports. In this study, we examined the effects on LID of two different statins alone and in combination with ketamine in unilateral 6-hydroxydopamine-lesioned male rats, the standard model for preclinical LID studies. Ketamine attenuated the development of AIMs, while the non-polar lovastatin only showed anti-dyskinetic activity early in the priming period but did not prevent the development of LID, and the polar pravastatin showed no anti-dyskinetic activity.

View Article and Find Full Text PDF

Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators.

ACS Pharmacol Transl Sci

December 2024

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.

Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified.

View Article and Find Full Text PDF

Sub-anesthetic ketamine has been demonstrated to reduce abnormal involuntary movements (AIMs) in preclinical models of L-DOPA-induced dyskinesia (LID) and retrospective Parkinson's disease case reports. In this study, we examined the effects on L-DOPA-induced dyskinesia of two statins alone and in combination with ketamine in unilateral 6-hydroxydopamine-lesioned male rats, the standard preclinical LID model. Sub-anesthetic ketamine attenuated the development of AIMs, while lovastatin only showed anti-dyskinetic activity at the beginning of the priming but did not prevent the development of LID.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!