Ras, a small GTPase protein, is thought to mediate Th2-dependent eosinophilic inflammation in asthma. Ras requires cell membrane association for its biological activity, and this requires the posttranslational modification of Ras with an isoprenyl group by farnesyltransferase (FTase) or geranylgeranyltransferase (GGTase). We hypothesized that inhibition of FTase using FTase inhibitor (FTI)-277 would attenuate allergic asthma by depleting membrane-associated Ras. We used the OVA mouse model of allergic inflammation and human airway epithelial (HBE1) cells to determine the role of FTase in inflammatory cell recruitment. BALB/c mice were first sensitized then exposed to 1% OVA aerosol or filtered air, and half were injected daily with FTI-277 (20 mg/kg per day). Treatment of mice with FTI-277 had no significant effect on lung membrane-anchored Ras, Ras protein levels, or Ras GTPase activity. In OVA-exposed mice, FTI-277 treatment increased eosinophilic inflammation, goblet cell hyperplasia, and airway hyperreactivity. Human bronchial epithelial (HBE1) cells were pretreated with 5, 10, or 20 μM FTI-277 prior to and during 12 h IL-13 (20 ng/ml) stimulation. In HBE1 cells, FTase inhibition with FTI-277 had no significant effect on IL-13-induced STAT6 phosphorylation, eotaxin-3 peptide secretion, or Ras translocation. However, addition of exogenous FPP unexpectedly augmented IL-13-induced STAT6 phosphorylation and eotaxin-3 secretion from HBE1 cells without affecting Ras translocation. Pharmacological inhibition of FTase exacerbates allergic asthma, suggesting a protective role for FTase or possibly Ras farnesylation. FPP synergistically augments epithelial eotaxin-3 secretion, indicating a novel Ras-independent farnesylation mechanism or direct FPP effect that promotes epithelial eotaxin-3 production in allergic asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964018PMC
http://dx.doi.org/10.4049/jimmunol.1601317DOI Listing

Publication Analysis

Top Keywords

hbe1 cells
16
eosinophilic inflammation
12
allergic asthma
12
ras
11
airway hyperreactivity
8
ras gtpase
8
allergic inflammation
8
inhibition ftase
8
epithelial hbe1
8
role ftase
8

Similar Publications

Spatially coordinated ERK signaling events ("SPREADs") transmit radially from a central point to adjacent cells via secreted ligands for EGFR and other receptors. SPREADs maintain homeostasis in non-pulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease. To address these questions, we measured SPREAD activity with live-cell ERK biosensors in human bronchial epithelial cell lines (HBE1 and 16HBE) and primary human bronchial epithelial (pHBE) cells, in both submerged and biphasic Air-Liquid Interface (ALI) culture conditions (i.

View Article and Find Full Text PDF

Rationale: Spatially coordinated ERK signaling events ("SPREADs") transmit radially from a central point to adjacent cells via secreted ligands for EGFR and other receptors. SPREADs maintain homeostasis in non-pulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease.

Objectives: (1) To characterize spatiotemporal ERK activity in response to pro-inflammatory ligands, and (2) to assess pharmacological and metabolic regulation of cytokine-mediated SPREADs.

View Article and Find Full Text PDF

Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis.

Genomics Proteomics Bioinformatics

December 2023

Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA. Electronic address:

The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis.

View Article and Find Full Text PDF

Monocyte-derived exosomal XIST exacerbates acute lung injury by regulating the miR-448-5p/HMGB2 axis.

Int Immunopharmacol

September 2023

The Second Clinical College, Dalian Medical University, Dalian 116000, PR China. Electronic address:

Monocyte-derived exosomes (Exos) have been implicated in inflammation-related autoimmune/inflammatory diseases via transferring bioactive cargoes to recipient cells. The purpose of this study was to investigate the possible effect of monocyte-derived Exos on the initiation and the development of acute lung injury (ALI) by delivering long non-coding RNA XIST. Key factors and regulatory mechanisms in ALI were predicted by bioinformatics methods.

View Article and Find Full Text PDF

Resveratrol attenuated fatty acid synthesis through MAPK-PPAR pathway in red tilapia.

Comp Biochem Physiol C Toxicol Pharmacol

June 2023

Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China. Electronic address:

High-fat (HF) diets have been shown to cause hepatic impairment in fish species, but the mode of action, especially the pathways involved, has not yet been determined. In this study, the effects of resveratrol (RES) supplementation on the hepatic structure and fat metabolism of red tilapia (Oreochromis niloticus) were determined. Based on transcriptome and proteomics results, RES was found to promote fatty acid β-oxidation in the blood, liver, and liver cells associated with apoptosis and the MAPK/PPAR signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!