The geometry of seven NAD+ analogues bound to horse liver alcohol dehydrogenase (LADH) modified only in their nicotinamide group, have been studied using AMBER molecular mechanics energy-minimization procedures. Starting geometries were taken from X-ray crystallographic data for NAD+/Me2SO/LADH reported by Eklund and co-workers. In this study the NAD+ analogues were encaged by the constituent amino acids of the enzyme within a range of 0.6 nm from the initial NAD+/Me2SO/Zn2+ complex. The calculational method used is able to rationalize individual substituent effects and to evaluate the essential interactions between NAD+ analogue, enzyme, Me2SO and Zn2+ without the necessity of additional X-ray data. The results presented here demonstrate that the reactivity of NAD+ derivatives as reported in literature can be qualitatively related to the position of the pyridine moiety in the active site.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1988.tb14231.xDOI Listing

Publication Analysis

Top Keywords

molecular mechanics
8
nad+ derivatives
8
modified nicotinamide
8
nicotinamide group
8
horse liver
8
liver alcohol
8
alcohol dehydrogenase
8
nad+ analogues
8
nad+
5
mechanics calculation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!