Background: Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system. Although complement-dependent astrocyte damage mediated by anti-aquaporin 4 autoantibody (AQP4-Ab) is well acknowledged to be the core of NMOSD pathogenesis, additional inflammatory cascades may contribute to the establishment of lesion formation. Thus, in this study, we investigated the possible pathogenic role of immune-reactive mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) of NMOSD patients.

Methods: Using quantitative polymerase chain reaction, we measured extracellular mtDNA levels in CSF of NMOSD patients positive for AQP4-Ab. Patients with multiple sclerosis or other neurological diseases were examined as controls. Pre- and post-treatment extracellular mtDNA levels were also compared in the NMOSD group. Extracellular mtDNA release from human astrocytes was analyzed in vitro utilizing NMOSD sera, and interleukin (IL)-1β production was measured in supernatants of mixed glial cells stimulated with DNA fraction of CSF derived from NMOSD patients. Furthermore, specific innate immune pathways mediating the IL-1β production by mtDNA were investigated in peripheral blood mononuclear cells with selective inhibitors of Toll-like receptor 9 (TLR9) and NOD-like receptor protein 3 (NLRP3) inflammasomes.

Results: Extracellular mtDNA level was specifically elevated in acute phase of NMOSD CSF. In vitro studies provided the evidence that mtDNA is released from human astrocytes by NMOSD sera. In addition, DNA fraction isolated from NMOSD CSF promoted secretion of IL-1β from mixed glial cells. Selective inhibition of TLR9 and NLRP3 inflammasomes revealed that mtDNA-mediated IL-1β production depends on specific innate immune pathways.

Conclusion: Extracellular mtDNA is specifically elevated in the CSF of patients with acute phase NMOSD, and mtDNA released by AQP4-Ab-mediated cellular damage elicits the innate immune cascades via TLR9 and NLRP3 inflammasomes pathways. Our study highlights mtDNA-mediated innate immune pathways as a novel therapeutic target for future treatment of NMOSD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924507PMC
http://dx.doi.org/10.1186/s12974-018-1162-0DOI Listing

Publication Analysis

Top Keywords

extracellular mtdna
20
innate immune
16
nmosd
12
nmosd patients
12
il-1β production
12
mtdna
9
cerebrospinal fluid
8
mitochondrial dna
8
neuromyelitis optica
8
optica spectrum
8

Similar Publications

The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with chronic low-grade inflammation, but the primary factors triggering this inflammation remain unclear. Extracellular or cell-free DNA (exDNA) originates from virtually all tissues, being released during cell death, and stimulates the innate immune system. Our study was designed as an observational, cross-sectional cohort study of children with CKD (both before and after kidney transplantation) and controls to analyze associations between exDNA, markers of inflammation, and cardiovascular health.

View Article and Find Full Text PDF

Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

T-2 toxin triggers immunotoxic effects in goats by inducing ferroptosis and neutrophil extracellular traps.

Toxicol Appl Pharmacol

January 2025

College of Veterinary Medicine, Southwest University, Chongqing 400715, China. Electronic address:

T-2 toxin, a prevalent mycotoxin, represents a notable global public health risk. Neutrophil extracellular traps (NETs) and ferroptosis are involved in a variety of pathophysiological processes and are implicated in goat immunity. However, the impact of T-2 toxin on NETs release, ferroptosis, and their interplay have not been previously documented.

View Article and Find Full Text PDF

Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!