N-mixture models provide an appealing alternative to mark-recapture models, in that they allow for estimation of detection probability and population size from count data, without requiring that individual animals be identified. There is, however, a cost to using the N-mixture models: inference is very sensitive to the model's assumptions. We consider the effects of three violations of assumptions that might reasonably be expected in practice: double counting, unmodeled variation in population size over time, and unmodeled variation in detection probability over time. These three examples show that small violations of assumptions can lead to large biases in estimation. The violations of assumptions we consider are not only small qualitatively, but are also small in the sense that they are unlikely to be detected using goodness-of-fit tests. In cases where reliable estimates of population size are needed, we encourage investigators to allocate resources to acquiring additional data, such as recaptures of marked individuals, for estimation of detection probabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2362DOI Listing

Publication Analysis

Top Keywords

n-mixture models
12
population size
12
violations assumptions
12
estimation detection
8
detection probability
8
assumptions consider
8
unmodeled variation
8
robustness n-mixture
4
models
4
models n-mixture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!