Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Diabetes-associated osteoporosis is mainly caused by the formation and accumulation of advanced glycation end products (AGEs). Angiotensin II type 1 receptor blocker (ARB) has anabolic bone effects on the physicochemical properties of the bone in diabetes. We hypothesized that ARB could inhibit AGEs-induced deleterious effects.
Main Methods: In this study, we chose seven-week-old Leprdb/Lepr+ (db/+) and Leprdb/Leprdb (db/db) mice. After 12 week intervention by irbesartan, the microarchitecture and mechanical strength of the bone of seven-week-old db/db mice were investigated systematically. Meanwhile, the molecular mechanisms of the osteoblasts were analyzed, after AGEs or irbesartan were added to the culture. Also, intracellular formation of reactive oxygen species (ROS) was measured with DCF fluorescence.
Key Foundings: Results showed that 12-week irbesartan treatment could dramatically improve trabecular bone microarchitecture through increasing BV/TV (p = 0.003, +46.7%), Tb.N (p = 0.020, +52.0%), and decreasing that of Tb.Sp (p = 0.005, -21.2%) and SMI (p = 0.007, -26.4%), comparing with the db/db group. Irbesartan could also substantially raise biomechanical parameters including max load (p = 0.013, +20.7%), fracture load (p = 0.014, +70.5%), energy absorption (p = 0.019, +99.4%). Besides, it could inhibit AGEs-induced damage of cell proliferation and osteogenic differentiation of osteoblasts, as well as suppressing the activation of apoptosis caused by AGEs. Moreover, co-incubation with irbesartan could prevent the AGEs-induced increase of intracellular oxidative stress and RAGE expression in osteoblasts.
Significance: In conclusion, this study suggested that irbesartan might play a protective role in diabetes-related bone damages by blocking the deleterious effects of AGEs/RAGE-mediated oxidative stress. This may provide a revolutionary benefits to therapy with irbesartan on diabetic osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2018.04.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!