Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia.

J Clin Oncol

Kiyomi Morita, Hagop M. Kantarjian, Feng Wang, Yuanqing Yan, Carlos Bueso-Ramos, Koji Sasaki, Ghayas C. Issa, Sa Wang, Jeffrey Jorgensen, Xingzhi Song, Jianhua Zhang, Samantha Tippen, Rebecca Thornton, Marcus Coyle, Latasha Little, Curtis Gumbs, Naveen Pemmaraju, Naval Daver, Courtney D. DiNardo, Marina Konopleva, Michael Andreeff, Farhad Ravandi, Jorge E. Cortes, Tapan Kadia, Elias Jabbour, Guillermo Garcia-Manero, Keyur P. Patel, P. Andrew Futreal, and Koichi Takahash, The University of Texas MD Anderson Cancer Center, Houston, TX; Kiyomi Morita, The University of Tokyo, Tokyo; and Koichi Takahashi, Kyoto University, Kyoto, Japan.

Published: June 2018

Purpose The aim of the current study was to determine whether the degree of mutation clearance at remission predicts the risk of relapse in patients with acute myeloid leukemia (AML). Patients and Methods One hundred thirty-one previously untreated patients with AML who received intensive induction chemotherapy and attained morphologic complete remission (CR) at day 30 were studied. Pretreatment and CR bone marrow were analyzed using targeted capture DNA sequencing. We analyzed the association between mutation clearance (MC) on the basis of variant allele frequency (VAF) at CR (MC2.5: if the VAF of residual mutations was < 2.5%; MC1.0: if the VAF was < 1%; and complete MC [CMC]: if no detectable residual mutations) and event-free survival, overall survival (OS), and cumulative incidence of relapse (CIR). Results MC1.0 and CMC were associated with significantly better OS (2-year OS: 75% v 61% in MC1.0 v non-MC1.0; P = .0465; 2-year OS: 77% v 60% in CMC v non-CMC; P = .0303) and lower CIR (2-year CIR: 26% v 46% in MC1.0 v non-MC 1.0; P = .0349; 2 year-CIR: 24% v 46% in CMC v non-CMC; P = .03), whereas there was no significant difference in any of the above outcomes by MC2.5. Multivariable analysis adjusting for age, cytogenetic risk, allogeneic stem-cell transplantation, and flow cytometry-based minimal residual disease revealed that patients with CMC had significantly better event-free survival (hazard ratio [HR], 0.43; P = .0083), OS (HR, 0.47; P = .04), and CIR (HR, 0.27; P < .001) than did patients without CMC. These prognostic associations were stronger when preleukemic mutations, such as DNMT3A, TET2, and ASXL1, were removed from the analysis. Conclusion Clearance of somatic mutation at CR, particularly in nonpreleukemic genes, was associated with significantly better survival and less risk of relapse. Somatic mutations in nonpreleukemic genes may function as a molecular minimal residual disease marker in AML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008108PMC
http://dx.doi.org/10.1200/JCO.2017.77.6757DOI Listing

Publication Analysis

Top Keywords

risk relapse
12
clearance somatic
8
somatic mutations
8
acute myeloid
8
myeloid leukemia
8
mutation clearance
8
residual mutations
8
event-free survival
8
associated better
8
cmc non-cmc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!