Aim: Exhaled Nitric oxide (eNO) is an inflammatory marker. In 2002 Hall et al. [J Appl Physiol. 92:59-66] established an infant eNO measurement method, fulfilling four criteria of feasibility: simple, non-invasive, without impact on the natural breathing pattern, and accounting for flow by NO output (V'NO). Although tidal breathing is accepted as an eNO measurement method in uncooperative patients, it is seldom used outside research labs. The variability and lack of validated methods have restrained from exploring the area in preterm and term neonates the last years. This study aimed to validate clinically feasible longitudinal online tidal eNO and V'NO in a real-life birth cohort of un-sedated, hospitalized preterm, and term neonates.
Method: We included 149 newborns, GA 28-42 weeks. Each scheduled for six repeated, non-invasive, on-line eNO measurements with Ecomedics CLD 88sp and NO-free air. We used three 60-second-eNO measurements. The method was adapted to fit preterm and term neonates with unstable respiration, without excluding sighs and surrounding breaths.
Result: Protocol measurements with a maximum mutual difference of 1 ppb succeeded in 85-99%, increasing with postnatal age. We performed mixed model analyses in three hierarchical measurement levels. Despite the irregular breathing of newborns, the predictions of individual eNO levels in the average infant was a 0.05 SD. Exhaled NO was flow-dependent (P = 0.028); V'NO but not eNO was associated with preterm birth (P < 0.001) and >24 h CPAP treatment (P = 0.0316).
Conclusion: We validated clinically, non-invasive, online eNO measurements in neonates. The method was well tolerated and exhibited low subject-specific-prediction-variance and high success rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ppul.24019 | DOI Listing |
Eur Phys J C Part Fields
January 2025
A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 . Jets are reconstructed with the anti- algorithm for distance parameters of and 0.
View Article and Find Full Text PDFEur Phys J C Part Fields
December 2024
Allergy
December 2024
Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Background: The role of autoimmune IgE responses in atopic dermatitis (AD) is highly debated. While IgE targeting self-proteins has been extensively studied, IgE responses induced by human-homologous exogenous molecular allergens (HEMAs) remains less understood.
Aim: To investigate whether IgE antibody responses to HEMAs are associated with AD, its severity, and response to dupilumab.
Eur Phys J C Part Fields
October 2024
Authors affiliated with an institute or an international laboratory covered by a cooperation agreement with CERN, Geneva, Switzerland.
Using proton-proton collision data corresponding to an integrated luminosity of collected by the CMS experiment at , the decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the decay, is measured to be , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in and .
View Article and Find Full Text PDFA search for collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged particles using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of sqrt[s]=13 TeV, corresponding to an integrated luminosity of 138 fb^{-1}. Jets are reconstructed with the anti-k_{T} algorithm with a distance parameter of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!