A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical and migratory properties of normal, scar, and Dupuytren's fibroblasts. | LitMetric

Mechanical properties of myofibroblasts play a key role in Dupuytren's disease. Here, we used atomic force microscopy to measure the viscoelastic properties of 3 different types of human primary fibroblasts derived from a same patient: normal and scar dermal fibroblasts and palmar fascial fibroblasts from Dupuytren's nodules. Different stiffness hydrogels (soft ~1 kPa and stiff ~ 50 kPa) were used as cell culture matrix to mimic the mechanical properties of the natural tissues, and atomic force microscopy step response force curves were used to discriminate between elastic and viscous properties of cells. Since transforming growth factor-β1 (TGF-β1) is known to induce expression of α-smooth muscle actin positive stress fibers in myofibroblasts, we investigated the behavior of these fibroblasts before and after applying TGF-β1. Finally, we performed an in vitro cell motility test, the wound healing or scratch assay, to evaluate the migratory properties of these fibroblasts. We found that (1) Dupuytren's fibroblasts are stiffer than normal and scar fibroblasts, the elastic modulus E ranging from 4.4, 2.1, to 1.8 kPa, for Dupuytren's, normal and scar fibroblasts, respectively; (2) TGF-β1 enhances the level of α-smooth muscle actin expression and thus cell stiffness in Dupuytren's fibroblasts (E, ~6.2 kPa); (3) matrix stiffness influences cell mechanical properties most prominently in Dupuytren's fibroblasts; and (4) Dupuytren's fibroblasts migrate slower than the other fibroblasts by a factor of 3. Taking together, our results showed that mechanical and migratory properties of fibroblasts might help to discriminate between different pathological conditions, helping to identify and recognize specific cell phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2719DOI Listing

Publication Analysis

Top Keywords

dupuytren's fibroblasts
20
normal scar
16
fibroblasts
14
migratory properties
12
mechanical properties
12
fibroblasts dupuytren's
12
mechanical migratory
8
properties
8
dupuytren's
8
atomic force
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!