Idiopathic Parkinson's disease (PD) is a progressive neurodegenerative disorder, clinically manifested by cardinal motor symptoms including tremor at rest, bradykinesia, and muscle rigidity. Transplantation of dopaminergic (DAergic) neurons is an experimental therapy for PD, however, it is limited by suboptimal integration and low survival of grafts. Pretreatment of donor tissue may offer a strategy to improve properties of transplanted DAergic neurons and thereby clinical outcome. We have previously shown that a combination of neurotrophin-4/5 (NT-4/5) and glial cell line-derived neurotrophic factor (GDNF) demonstrated additive effects on rat ventral mesencephalic (VM) tissue. The present study investigated the effects of NT-4/5 and GDNF as single factors, or in combination on DAergic neurons, in organotypic explant cultures of fetal human ventral mesencephalon. For that purpose, free-floating roller-tube cultures were prepared from VM and the equally sized pieces grown for 1 week in the presence or absence of neurotrophic factors. Both neurotrophic factors increased dopamine content in the culture medium and in the number of tyrosine hydroxylase immunoreactive neurons, most prominently after combined GDNF + NT-4/5 treatment. Culture volumes did not differ between groups while content of lactate dehydrogenase in the culture medium was moderately reduced in all treated groups. In conclusion, we identified that a combination of GDNF and NT-4/5 robustly promoted differentiation and survival of human fetal VM DAergic neurons, an observation with potential promising impact for cell replacement approaches in PD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041882 | PMC |
http://dx.doi.org/10.1177/0963689717753188 | DOI Listing |
Int J Mol Sci
December 2024
Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.
In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA.
The dopamine (DA) transporter (DAT) is a major determinant of DAergic neurotransmission, and is a primary target for addictive and therapeutic psychostimulants. Evidence accumulated over decades in cell lines and in vitro preparations revealed that DAT function is acutely regulated by membrane trafficking. Many of these findings have recently been validated in vivo and in situ, and several behavioral and physiological findings raise the possibility that regulated DAT trafficking may impact DA signaling and DA-dependent behaviors.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China; Fujian Provincial Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China. Electronic address:
Mol Brain
November 2024
Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!