Here we report the design of membrane-active peptidomimetic molecules with a tunable arrangement of hydrophobic and polar groups. In spite of having the same chemical composition, the effective hydrophobicities of the compounds were different as a consequence of their chemical structure and conformational properties. The compound with lower effective hydrophobicity demonstrated antibacterial activity that was highly selective towards bacteria over mammalian cells. This study, highlighting the role in membrane selectivity of the specific arrangement of the different moieties in the molecular structure, provides useful indications for developing non-toxic antibacterial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc01926fDOI Listing

Publication Analysis

Top Keywords

design membrane-active
8
membrane-active peptidomimetic
8
selectively targeting
4
targeting bacteria
4
bacteria tuning
4
tuning molecular
4
molecular design
4
peptidomimetic amphiphiles
4
amphiphiles report
4
report design
4

Similar Publications

Optical monitoring of peptide binding to live cells is hampered by the abundance of naturally occurring fluorophores such as tryptophan. Unnatural amino acids incorporating synthetic fluorophores such as BODIPY overcome these optical limitations. A drawback to using fluorophores in lipid binding peptide design is their propensity to override other interactions, potentially causing the peptides to lose their binding selectivity.

View Article and Find Full Text PDF

The dynamic nature of bacterial lipid membranes significantly impacts the efficacy of antimicrobial therapies. However, traditional assay methods often fall short in replicating the complexity of these membranes, necessitating innovative approaches. Herein, we successfully fabricated model bacterially supported lipid bilayers (SLBs) that closely mimic the characteristics of Gram-positive bacteria using the solvent-assisted lipid bilayer (SALB) technique.

View Article and Find Full Text PDF

Influence of lipid vesicle properties on the function of conjugation dependent membrane active peptides.

J Mater Chem B

October 2024

Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry, and Biology, Linköping University, 581 83 Linköping, Sweden.

Membrane active peptides (MAPs) can provide novel means to trigger the release of liposome encapsulated drugs to improve the efficacy of liposomal drug delivery systems. Design of MAP-based release strategies requires possibilities to carefully tailor the interactions between the peptides and the lipid bilayer. Here we explore the influence of lipid vesicle properties on the function of conjugation-dependent MAPs, specifically focusing on two designed peptides, JR2KC and CKV.

View Article and Find Full Text PDF

Understanding the interplay between lipid assemblies and solid supports is crucial for advancing model membrane systems and biomedical applications. This study investigates the interfacial behaviors of unilamellar and multilamellar cationic liposomes on silicon dioxide and their interactions with a membrane-active AH peptide. Using QCM-D monitoring, unilamellar liposomes were found to rapidly form SLBs through one-step adsorption kinetics, whereas multilamellar liposomes exhibited slower adsorption.

View Article and Find Full Text PDF

Membrane active peptides are known to porate lipid bilayers, but their exact permeabilization mechanism and the structure of the nanoaggregates they form in membranes have often been difficult to determine experimentally. For many sequences at lower peptide concentrations, transient leakage is observed in experiments, suggesting the existence of transient pores. For two well-know peptides, alamethicin and melittin, we show here that molecular mechanics simulations i) can directly distinguish equilibrium poration and non-equilibrium transient leakage processes, and ii) can be used to observe the detailed pore structures and mechanism of permeabilization in both cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!