All- retinoic acid (ATRA) is a highly effective treatment for acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML). However, ATRA-based treatment is not effective in other subtypes of AML. In non-APL AML, ATRA signaling pathway is impaired or downmodulated, and consequently fails to respond to pharmacological doses of ATRA. Therefore, complementary treatment strategies are needed to improve ATRA responsiveness in non-APL AML. In this study, we investigated the combined effect of ATRA and bromodomain inhibitor JQ1, proven to have potent anti-cancer activity mainly through inhibition of c-Myc. We showed that the combination of ATRA with JQ1 synergistically inhibited proliferation of AML cells. The synergistic growth inhibition was resulted from differentiation or apoptosis depending on the kind of AML cells. Concomitantly, the combined treatment of ATRA and JQ1 caused greater depletion of c-Myc and hTERT expression than each agent alone in AML cells. Taken together, these findings support the rationale for the use of the combination of ATRA and JQ1 as a therapeutic strategy for the treatment of AML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984067 | PMC |
http://dx.doi.org/10.15283/ijsc18021 | DOI Listing |
Antioxidants (Basel)
March 2022
High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
Accumulating evidence has witnessed the Kelch-like ECH-associated protein 1(KEAP1)- nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis is the main regulatory factor of cell resistance to endogenous and exogenous oxidative assaults. However, there are few studies addressing the upstream regulatory factors of KEAP1. Herein, bioinformatic analysis suggests bromodomain-containing protein 4 (BRD4) as a potential top transcriptional regulator of KEAP1 in lung cancer.
View Article and Find Full Text PDFBiomedicines
November 2021
Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France.
Targeted protein degradation using chimeric small molecules such as proteolysis-targeting chimeras (PROTACs) and specific and nongenetic inhibitors of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) is an emerging modality in drug discovery. Here, we expand the repertoire of E3 ligases capable of ubiquitylating target proteins using this system. By incorporating β-naphthoflavone (β-NF) as a ligand, we developed a novel class of chimeric molecules that recruit the arylhydrocarbon receptor (AhR) E3 ligase complex.
View Article and Find Full Text PDFInt J Stem Cells
May 2018
Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea.
All- retinoic acid (ATRA) is a highly effective treatment for acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML). However, ATRA-based treatment is not effective in other subtypes of AML. In non-APL AML, ATRA signaling pathway is impaired or downmodulated, and consequently fails to respond to pharmacological doses of ATRA.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
February 2017
Institute of Molecular & Cellular Biosciences, The University of Tokyo.
Bromodomains are epigenetic 'readers' of histone acetylation. The first potent bromodomain and extra-terminal domain (BET) inhibitors, (+)-JQ1 and I-BET762 (also known as GSK525762), were reported in 2010. Some BET inhibitors are already under clinical trial for the treatment of cancers, but so far, only a few chemical scaffolds are available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!