It is well established that age-related decline of a woman's fertility is related to the poor developmental potential of her gametes. The age-associated decline in female fertility is largely attributable to the oocyte aging caused by ovarian aging. Age-associated oocyte aging results in a decrease in oocyte quality. In contrast to ovarian aging, there is a concept of postovulatory oocyte aging. Postovulatory aging of oocytes, not being fertilized for a prolonged time after ovulation, is known to significantly affect the development of oocytes. Both categories of oocyte aging have similar phenotypes of reproductive failure. However, the mechanisms of the decline in oocyte quality are not necessarily equivalent. An age-dependent increase in aneuploidy is a key determinant of oocyte quality. The reduced expression of molecules regulating cell cycle control during meiosis might be involved in the age-dependent increase in aneuploidy. The mechanism of age-associated oocyte aging might be involved in mitochondrial dysfunction, whose etiologies are still unknown. Alternatively, the mechanism of postovulatory oocyte aging might be involved in reactive oxygen species-induced mitochondrial injury pathways followed by abnormal intracellular Ca regulation of the endoplasmic reticulum. We suggest that future research into the mechanism of oocyte aging will be necessary to develop a method to rescue the poor developmental potential of aged oocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904634 | PMC |
http://dx.doi.org/10.1007/s12522-011-0099-0 | DOI Listing |
Redox Biol
January 2025
Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China. Electronic address:
Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea.
Objectives: The present study describes the comparative effect of 24-week supplementation of beeswax alcohol (BWA, Raydel, 0.5% and 1.0%, wt/wt) and coenzyme Q (CoQ, 0.
View Article and Find Full Text PDFTheriogenology
January 2025
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China. Electronic address:
Post-maturation oocyte aging (PMOA) is known to significantly impair the developmental potential of oocytes; however, comprehensive studies on ovine PMOA remain limited. In mice, cumulus cells (CCs) accelerate oocyte aging by releasing cytokines, but the roles of CCs and cytokines in PMOA of domestic animals are poorly understood. This study aimed to elucidate the involvement of CCs and tumor necrosis factor (TNF)-α in the PMOA of ovine oocytes.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
Extracellular vesicles, or exosomes, are produced by every type of cell and contain metabolites, proteins, lipids, and nucleic acids. Their role in health and disease is to influence different aspects of cell biology and to act as intermediaries between cells. Follicular fluid exosomes or extracellular vesicles (FF-EVs) secreted by ovarian granulosa cells are critical mediators of ovary growth and maturation.
View Article and Find Full Text PDFReprod Domest Anim
January 2025
College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China.
Oocyte quality is crucial for determining the subsequent embryo developmental capacity and reproductive outcomes. However, aging is detrimental to oocyte quality. Previous studies have demonstrated that soy isoflavones have positive effects on the reproductive performance of female pigs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!