The expression of autophagy-related proteins within the corpus luteum lifespan in pigs.

Domest Anim Endocrinol

Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.

Published: July 2018

AI Article Synopsis

  • Autophagy is a cellular process involved in degrading cellular components, with research indicating its significance in the development and regression of the corpus luteum (CL).
  • The study analyzed porcine CLs at different stages of the estrous cycle and found evidence of autophagy, including the presence of autophagosomes and autophagic markers at varying levels.
  • Results showed an increased expression of specific proteins associated with autophagy in late-stage CLs, suggesting that autophagy plays a role in both supporting CL function in early stages and contributing to its regression later on.

Article Abstract

Autophagy is a cellular process that involves the degradation of intracellular components. Recent studies suggested a role for autophagy in corpus luteum (CL) regression; however, a complete understanding of its contribution to CL function remains unclear. The present research using porcine CLs obtained from gilts at the early (CL1, n = 5), middle (CL2, n = 5), and late (CL3, n = 5) luteal phase of the estrous cycle aimed to assess the incidence of autophagy during CL development. The stages of collected CLs were verified through morphological analysis and intraluteal progesterone concentration. The presence of autophagosomes was assessed using transmission electron microscopy, and the expression of autophagic markers was examined at mRNA (BECN1 and Lamp1) and protein (Beclin 1, LC3-II, and Lamp 1) levels. Lamp 1 immunolocalization was also performed in luteal tissue. Double-membrane autophagosomes and autophagy-related proteins were found in all examined CLs. Interestingly, there was a greater expression of Beclin 1 (P = 0.005 and P = 0.025) and Lamp 1 (P = 0.009 and P = 0.032) protein in CL3 as compared with CL1 and CL2. In addition, the presence of autolysosomes in CL3 indicated advanced autophagy at that developmental stage. Overall, the occurrence of autophagy throughout CL development and regression suggests it has a role in the regulation of CL lifespan in pigs. In the early and mature CL, autophagy is proposed to promote luteal formation and function, whereas in the late CL, it may participate in luteal regression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.domaniend.2018.03.004DOI Listing

Publication Analysis

Top Keywords

autophagy-related proteins
8
corpus luteum
8
lifespan pigs
8
autophagy development
8
autophagy
6
expression autophagy-related
4
proteins corpus
4
luteum lifespan
4
pigs autophagy
4
autophagy cellular
4

Similar Publications

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood.

View Article and Find Full Text PDF

Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.

View Article and Find Full Text PDF

Lysophagy eliminates damaged lysosomes and is crucial to cellular homeostasis; however, its underlying mechanisms are not entirely understood. We screen a ubiquitination-related compound library and determine that the substrate recognition component of the SCF-type E3 ubiquitin ligase complex, SCF(FBXO3), which is a critical lysophagy regulator. Inhibition of FBXO3 reduces lysophagy and lysophagic flux in response to L-leucyl-L-leucine methyl ester (LLOMe).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is an irreversible age-related neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides and neurofibrillary tangles. Di Huang Yi Zhi (DHYZ) formula, a traditional Chinese herbal compound comprising several prescriptions, demonstrates properties that improve cognitive abilities in clinical. Nonetheless, its molecular mechanisms on treating AD through improving neuron cells mitochondria function have not been deeply investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!