The Onchidiidae family is ideal for studying the evolution of marine invertebrate species from sea to wetland environments. However, comparative studies of Onchidiidae species are rare. A total of 40 samples were collected from four species (10 specimens per onchidiid), and their histological and molecular differences were systematically evaluated to elucidate the morphological foundations underlying the adaptations of these species. A histological analysis was performed to compare the structures of respiratory organs (gill, lung sac, dorsal skin) among onchidiids, and transcriptome sequencing of four representative onchidiids was performed to investigate the molecular mechanisms associated with their respective habitats. Twenty-six SNP markers of Onchidium reevesii revealed some DNA polymorphisms determining visible traits. Non-muscle myosin heavy chain II (NMHC II) and myosin heavy chain (MyHC), which play essential roles in amphibian developmental processes, were found to be differentially expressed in different onchidiids and tissues. The species with higher terrestrial ability and increased integrated expression of Os-MHC (NMHC II gene) and the MyHC gene, illustrating that the expression levels of these genes were associated with the evolutionary degree. This study provides a comprehensive analysis of the adaptions of a diverse and widespread group of invertebrates, the Onchidiidae. Some onchidiids can breathe well through gills and skin when under seawater, and some can breathe well through lung sacs and skin when in wetlands. A histological comparison of respiratory organs and the relative expression levels of two genes provided insights into the adaptions of onchidiids that allowed their transition from shallow seas to wetlands. This work provides a valuable reference and might encourage further study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919635PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196252PLOS

Publication Analysis

Top Keywords

shallow seas
8
seas wetlands
8
respiratory organs
8
myosin heavy
8
heavy chain
8
expression levels
8
levels genes
8
breathe well
8
species
6
onchidiids
5

Similar Publications

Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments.

Environ Microbiol

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.

View Article and Find Full Text PDF

Mesophotic coral ecosystems (MCEs) have gained considerable attention this last decade but the paucity of knowledge on these ecosystems is pronounced, particularly in the Southwestern Indian Ocean region. We explore the spatial variation in macro-benthic and scleractinian communities along a wide depth gradient (15-95 m) and among contrasted sites around Reunion Island. Values for percent cover of macro-benthic and scleractinian communities varied significantly along depth, resulting in a vertical zonation of communities.

View Article and Find Full Text PDF

The Mediterranean Sea is recognized as one of the most threatened marine environments due to pollution, the unintentional spread of invasive species, and habitat destruction. Understanding the biodiversity patterns within this sea is crucial for effective resource management and conservation planning. During a research cruise aimed at assessing biodiversity near desalination plants in the vicinity of Larnaca, Cyprus, conducted as part of the WATER-MINING project (Horizon 2020), specimens of the tanaidacean genus were collected.

View Article and Find Full Text PDF

Passive acoustic monitoring for seabed bubble flows: Case of shallow methane seeps at Laspi Bay (Black Sea).

J Acoust Soc Am

December 2024

Department of Geology and Geochemistry of Fossil Fuels, Faculty of Geology, Moscow State University, Moscow 119991, Russia.

This research quantifies the gas release rate from a natural shallow methane seep site in the Laspi Bay (Black Sea), whose origin is thermocatalytic. An adaptive single bubble identification technique was applied to analyze gas volume and release rates from passive acoustic data. Gas from the seafloor was emitted by single bubbles that occurred in clusters.

View Article and Find Full Text PDF

Exploring latitudinal gradients and environmental drivers of amphipod biodiversity patterns regarding depth and habitat variations.

Sci Rep

December 2024

Department of Marine Zoology, Biodiversity Information Section, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.

Amphipods are known as umbrella species in conservation biology that their protection indirectly protects other species. Recent hypotheses suggest a bimodal latitudinal global species richness pattern for amphipods, irrespective of species' depth or habitat type. Phylogeographic hypotheses suggested two distinct procedures for amphipod diversification: ecological radiation and Pangea fragmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!