Objectives: To demonstrate the benefits-mapping software Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE), which integrates local air quality data with previously published concentration-response and health-economic valuation functions to estimate the health effects of changes in air pollution levels and their economic consequences.
Methods: We illustrate a local health impact assessment of ozone changes in the 10-county nonattainment area of the Dallas-Fort Worth region of Texas, estimating the short-term effects on mortality predicted by 2 scenarios for 3 years (2008, 2011, and 2013): an incremental rollback of the daily 8-hour maximum ozone levels of all area monitors by 10 parts per billion and a rollback-to-a-standard ambient level of 65 parts per billion at only monitors above that level.
Results: Estimates of preventable premature deaths attributable to ozone air pollution obtained by the incremental rollback method varied little by year, whereas those obtained by the rollback-to-a-standard method varied by year and were sensitive to the choice of ordinality and the use of preloaded or imported data.
Conclusions: BenMAP-CE allows local and regional public health analysts to generate timely, evidence-based estimates of the health impacts and economic consequences of potential policy options in their communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922206 | PMC |
http://dx.doi.org/10.2105/AJPH.2017.304252 | DOI Listing |
J Occup Environ Med
November 2024
Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Objective: The study investigated the effects of air pollutants on the incidence of acute angle-closure glaucoma (AACG) in Hefei, China.Methods: A combination of generalized additive models (GAM) and distributed lag non-linear models (DLNM) was used to explore the relationship between air pollutants and the incidence of AACG.Results: Exposure-response curves showed that exposure to PM2.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.
Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.
View Article and Find Full Text PDFMater Today Bio
February 2025
Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
Skin-on-a-chip models provide physiologically relevant platforms for studying diseases and drug evaluation, replicating the native skin structures and functions more accurately than traditional 2D or simple 3D cultures. However, challenges remain in creating models suitable for microneedling applications and monitoring, as well as developing skin cancer models for analysis and targeted therapy. Here, we developed a human skin/skin cancer-on-a-chip platform within a microfluidic device using bioprinting/bioengineering techniques.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.
View Article and Find Full Text PDFMater Adv
January 2025
Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!