An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes.

Chembiochem

Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.

Published: July 2018

The cytochrome P450 monooxygenase CYP267B1 from Sorangium cellulosum was applied for the enzymatic oxidation of the sesquiterpene alcohols T-muurolol and isodauc-8-en-11-ol. Various isotopically labelled geranyl and farnesyl diphosphates were used for product identification from micro-scale reactions, for the determination of the absolute configurations of unknown compounds, to follow the stereochemical course of a cytochrome P450-catalysed hydroxylation step, and to investigate kinetic isotope effects. Overall, this study demonstrates that isotopically labelled terpene precursors are highly useful to follow cytochrome P450 dependent oxidations of terpenes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201800215DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
12
oxidations terpenes
8
isotopically labelled
8
isotopic labelling
4
labelling strategy
4
strategy study
4
cytochrome
4
study cytochrome
4
p450 oxidations
4
terpenes cytochrome
4

Similar Publications

Cardiovascular Risk in Prostate Cancer: State-of-the-Art Review.

JACC CardioOncol

December 2024

Division of Urology, Department of Surgery, McMaster University, Hamilton, Ontario, Canada.

Cardiovascular disease is common in patients with prostate cancer and is a significant cause of death. Cardiovascular risk factors are frequent in this population and are often not addressed to thresholds recommended by cardiovascular practice guidelines. Androgen deprivation therapy reduces muscle strength and increases adiposity, increasing the risk for diabetes and hypertension, although its relationship with adverse cardiovascular events requires confirmation.

View Article and Find Full Text PDF

Proton pump inhibitors (PPIs), metabolized by cytochrome P450 (P450) enzymes, are widely used to inhibit gastric acid secretion. This study investigated CYP116B46, a self-sufficient monooxygenase with a reductase domain, to elucidate its interaction with ilaprazole, a PPI. Binding assays and docking simulations indicate that CYP116B46 serves as a suitable model for studying PPI metabolism.

View Article and Find Full Text PDF

Background: The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand.

View Article and Find Full Text PDF

Adaptive evolution of stress response genes in parasites aligns with host niche diversity.

BMC Biol

January 2025

Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.

Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Article Synopsis
  • COVID-19, caused by SARS-CoV-2, poses serious global health risks, including the potential for secondary liver injury related to metabolic enzyme changes.
  • This study explores how prior infection with SARS-CoV-2 affects alcohol-induced liver damage, using transgenic mice that express human ACE2.
  • Results showed that infected mice experienced worsened liver injury after alcohol consumption, with alterations in metabolic enzymes and increased levels of a toxic alcohol byproduct, indicating a complex interaction between COVID-19 and alcohol effects on the liver.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!