Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To enable us to analyze more systematically the effects of the spectral distribution of light (i.e. light quality) on photosynthetic electron transport, we propose a simple mathematical model which describes electron transport reactions under light-limited conditions based on the excitation energy distributed to the photosystems. The model assumes that the rate-limiting photosystem performs the photochemical reaction at its maximum yield, while the yield in the other photosystem is passively down-regulated to equalize the rates of linear electron transport through the photosystems. Using intact cucumber leaves, we tested the model by comparing actual and estimated photosynthetic parameters under several combinations of photon flux densities of red and far-red lights (R and FR, respectively). Simultaneously provided R and FR yielded greater gross photosynthetic rates than the sums of the rates under only R and only FR, which is known as the 'enhancement effect'. The present model reproduced these non-additive increases in the gross photosynthetic rates in response to supplemental FR to R and provided more accurate estimates than an existing method that did not take the enhancement effect into account (root mean square errors: 0.11 and 0.21 μmol m-2 s-1, respectively). Using the present model, the photon flux density of the supplemental FR which gives the changing point of rate-limiting photosystem and the photochemical yields of the non-rate-limiting photosystems were estimated reasonably well. The present study has therefore formulated a simplified quantitative electron transport model in response to the light spectrum based on generally accepted concepts and demonstrated its validity experimentally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcy085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!