This study investigates the crystallization and phase transition behavior of the amorphous metallic alloy AuCuAgSi. This alloy has been recently shown to exhibit a transition of a metastable to a more stable crystalline state, occurring via metastable melting under strong non-equilibrium conditions. Such behavior had so far not been observed in other metallic alloys. In this investigation fast differential scanning calorimetry (FDSC) is used to explore crystallization and the solid-liquid-solid transition upon linear heating and during isothermal annealing, as a function of the conditions under which the metastable phase is formed. It is shown that the occurrence of the solid-liquid-solid transformation in FDSC depends on the initial conditions; this is explained by a history-dependent nucleation of the stable crystalline phase. The microstructure was investigated by scanning and transmission electron microscopy and x-ray diffraction. Chemical mapping was performed by energy dispersive x-ray spectrometry. The relationship between the microstructure and the phase transitions observed in FSDC is discussed with respect to the possible kinetic paths of the solid-liquid-solid transition, which is a typical phenomenon in monotropic polymorphism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aac054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!