Objective: Resting-state functional connectivity (rsFC) of the human brain is closely related with neurological and psychiatric disorders. Mice are widely used to investigate the physiological mechanisms of such disorders, because of the applicability of invasive experimental techniques. Thus, studies on rsFC of the mouse brain are essential to link physiological mechanisms with these disorders in humans. In this study, we investigated the applicability of intrinsic optical signal imaging of cerebral blood volume (IOSI-CBV) for rsFC analysis of the mouse brain.
Approach: Transcranial IOSI-CBV images were collected from the brains of un-anesthetized wild-type mice with a cooled-CCD camera. The time traces of all pixels were averaged to create a global signal (GS). Marginal and partial correlation analyses were performed to estimate the rsFC based on CBV signals both with and without GS removal. The consistency of the results were confirmed by comparing them with to the rsFCs data reported in the previous studies.
Main Results: We confirmed that GS correlated with heart rate fluctuation in the FC frequency band. The marginal correlation coefficient of CBV with GS removal was consistent with measurements using conventional optical imaging methods relying on oxygenated hemoglobin concentration and cerebral blood flow.
Significance: These results suggest the applicability and usefulness of the transcranial IOSI-CBV method to estimate rsFC of the mouse brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6579/aac033 | DOI Listing |
Elife
December 2024
Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023.
View Article and Find Full Text PDFEJNMMI Res
December 2024
μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium.
Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.
View Article and Find Full Text PDFProteomes
November 2024
Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
As the primary innate immune cells of the brain, microglia play a key role in various homeostatic and disease-related processes. To carry out their numerous functions, microglia adopt a wide range of phenotypic states. The proteomic landscape represents a more accurate molecular representation of these phenotypes; however, microglia present unique challenges for proteomic analysis.
View Article and Find Full Text PDFNeurol Int
December 2024
Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil.
Background/objectives: Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks the function of presynaptic D2 receptors on cholinergic interneurons, leading to the release of acetylcholine (ACh), which is hydrolyzed by the enzyme acetylcholinesterase (AChE).
View Article and Find Full Text PDFThyroid
December 2024
National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA.
Thyroid hormones (TH) play a key role in fetal brain development. While severe thyroid dysfunction, has been shown to cause neurodevelopmental and reproductive disorders, the rising levels of TH-disruptors in the environment in the past few decades have increased the need to assess effects of subclinical (mild) TH insufficiency during gestation. Since embryos do not produce their own TH before mid-gestation, early development processes rely on maternal production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!