[Effects of potassium on nitrogen translocation and distribution and nitrogen metabolism enzyme activities of sweet potato.].

Ying Yong Sheng Tai Xue Bao

College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao 266109, Shandong, China.

Published: November 2016

A pot experiment with N tracing techniques was designed to study the effect of potassium application on nitrogen transfer, photosynthetic characteristics and nitrogen metabolism enzyme activities in two different growth stages of sweet potato. Results indicated that potassium application significantly increased the shoot N distribution rate. Compared with control, the N transfer rate of K treatment increased by 76.2% and the total accumulation of N increased by 92.1% in tuber formation period. Different with tuber formation period, shoot N distribution rate decreased from 33.7% to 24.4%, but the root N distribution rate increased from 5.8% to 17% with the increase of K application in tuber rapid growth stage. Especially, root N accumulation of K treatment was 3 times of the CK. During the two growth stages, nitrate reductase, glutamate dehydrogenase, glutamine synthetase, glutamate synthase and net photosynthetic rate all increased with the increase of K application. Stepwise regression analysis showed that nitrogen metabolism enzyme activities (nitrate reductase, glutamate dehydrogenase, glutamine synthetase, glutamate synthase) and P were the main factors to affect the N transfer and distribution of sweet potato (R=0.965,R=0.942). Path analysis showed that nitrate reductase and glutamate dehydrogenase activities were the key factors to influence N distribution to the shoot in tuber formation period, while glutamate dehydrogenase, glutamate synthase activities were the key factors to influence N distribution to the tuber in tuber rapid growth stage.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201611.021DOI Listing

Publication Analysis

Top Keywords

glutamate dehydrogenase
16
nitrogen metabolism
12
metabolism enzyme
12
enzyme activities
12
distribution rate
12
tuber formation
12
formation period
12
nitrate reductase
12
reductase glutamate
12
glutamate synthase
12

Similar Publications

Article Synopsis
  • Diabetic kidney disease (DKD) is a major cause of kidney failure, largely due to damage in podocytes, which are essential for kidney function.
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key player in protecting cells from oxidative stress, making it a promising target for DKD therapies.
  • The study found that DDO-1039, a new Nrf2 activator, improved kidney health in diabetic mice by reducing podocyte injury, lowering blood sugar levels, and decreasing inflammation, endorsing its potential as a treatment for DKD.
View Article and Find Full Text PDF

[Impact of Organic Amendment on the Bacterial Community and Rice Yield in Paddy Soil].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.

View Article and Find Full Text PDF

Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months.

View Article and Find Full Text PDF

Transcriptomic and physiological analyses reveal the toxic effects of inorganic filters (nZnO and nTiO) on scleractinian coral Galaxea fascicularis.

Environ Res

December 2024

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.

The effects of sunscreen on scleractinian corals have garnered widespread attention; however, the toxic effects and mechanisms remain unclear. This study investigated the toxicological effects of two common inorganic filters used in sunscreens, nano zinc oxide and titanium dioxide (nZnO and nTiO₂), on the reef-building coral Galaxea fascicularis, focusing on the phenotypic, physiological, and transcriptomic responses. The results showed that after exposure to 0.

View Article and Find Full Text PDF

Bearded dragons () are a common reptile species kept under human care and suffer from a wide range of diseases for which plasma biochemistry is used as a first-line diagnostic test. There is limited information available regarding tissue enzyme activities and origin that could assist in interpreting the bearded dragon plasma biochemistry enzymology profile. The aim of this study was to characterize the tissue activities of seven enzymes routinely used in the reptile biochemistry panel: alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH), and creatine kinase (CK) in 12 adult inland bearded dragons in 13 tissues, plasma, and red blood cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!