We evaluated responses of hydrolase and oxidase activities in a subtropical Pinus elliottii plantation through a nitrogen (N) addition field experiment (dosage level: 0, 40, 120 kg N·hm·a). The results showed that N additions significantly decreased the carbon, nitrogen and phosphorus related hydrolase and oxidase activities. The activities of β-1,4-glucosidase (BG), cellobiohydrolase (CBH), β-1,4-N-acetylglucosaminidase (NAG) and peroxidase (PER) activities were decreased by 16.5%-51.1% due to N additions, and the decrease was more remarkable in the higher N addition treatment. The activities of α-1,4-glucosidase (aG), β-1,4-xylosidase (BX), acid phosphatase (AP) and phenol oxidase (PPO) were decreased by 14.5%-38.6% by N additions, however, there was no significant difference among the different N addition treatments. Soil enzyme activities varied obviously in different seasons. The activities of BG, NAG, BX, CBH, AP and PPO were in the order of March > June > October, and aG and PER activities were in the order of October > March > June. Most of the soil hydrolase and oxidase activities were positively correlated with soil pH, but negatively with NO-N content. It indicated that N additions inhibited soil hydrolase and oxidase activities by reducing soil pH and increasing soil nitrification. N additions inhibited the soil organic matter mineralization and turnover in the subtropical area, and the effects were obvious with the increasing dosage of N additions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201611.016 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Zoology, University of Lucknow, Lucknow, India.
Background: Various investigations have elucidated the impact of diet and environmental toxins on the aging process. Melamine (Mel) is a widely recognized and infamous food adulterant with documented toxicity in various organs, including the brain. Nevertheless, there is currently a dearth of reports on the neurotoxic effects of Mel in aging neurons.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
Aims: Stroke is a major public health concern leading to high rates of death and disability worldwide, unfortunately with no effective treatment available for stroke recovery during the repair phase.
Methods: Photothrombotic stroke was induced in mice. Adeno-associated viruses (AAV) were microinjected into the peri-infarct cortex immediately after photothrombotic stroke.
Eur Rev Med Pharmacol Sci
December 2024
Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.
Objective: Monoamine oxidase (MAO) inhibitors reduce inflammation in a number of in vitro and in vivo models. This finding led to the development of a novel MAO-B selective inhibitor (RG0216) designed to reduce blood-brain barrier penetration. To elucidate RG0216's regulatory role in inflammation-relevant signaling pathways, we employed a transcriptome analytic approach to identify genes that are differentially regulated by RG0216 and then globally identified which inflammation-relevant biological signaling pathways were altered by this drug.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi, China.
Peroxiredoxin 6 (PRDX6) is one of the Peroxiredoxin family members with only 1-Cys, using glutathione as the electron donor to reduce peroxides in cells. PRDX6 has been frequently studied and its expression was associated with poor prognosis in many tumors. However, the expression of PRDX6 in multiple myeloma (MM) and its relevance with MM remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!