Transcranial direct current stimulation (tDCS) has the capacity to enhance force output during a short-lasting maximal voluntary contraction (MVC) as well as during a long-lasting submaximal voluntary contraction until task failure. However, its effect on an intermittent maximal effort is not known. We hypothesized that anodal tDCS applied during or before a maximal fatigue task increases the amplitude of maximal voluntary contraction (aMVC) and voluntary activation (VA) in young healthy male participants. We measured VA, potentiated twitch at rest (Ptw), root mean square electromyogram (EMG), and aMVC during a fatiguing task that consisted of 35 × 5 s MVC of knee extensors and was performed during tDCS or 10 min after the end of tDCS (sham, anodal, or cathodal treatments). No effect of tDCS was detected on the first MVC but, when compared to sham tDCS, both anodal tDCS and cathodal tDCS reduced aMVC when tDCS was applied during the task (p < .001) and only anodal tDCS reduced aMVC when applied 10 min before the task (p = .03). The reductions in aMVC were accompanied by reductions in EMG of M. vastus lateralis for both tDCS treatments as well as in Ptw only during anodal tDCS and in VA only during cathodal tDCS. Both cathodal tDCS and anodal tDCS impaired force production during an intermittent fatiguing MVC task. The detrimental effects were stronger when tDCS was applied during the task. Here, cathodal and anodal tDCS specifically affected Ptw and VA indicating different underlying mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.24254DOI Listing

Publication Analysis

Top Keywords

voluntary contraction
12
tdcs
9
anodal cathodal
8
transcranial direct
8
direct current
8
current stimulation
8
force output
8
knee extensors
8
fatiguing task
8
young healthy
8

Similar Publications

We investigated the effects of low and high frequency isometric handgrip exercise training (IHGT) on resting blood pressure, and the affective/perceptual responses during training. Sixty young normotensive adults were randomised to either a no-intervention control group (CON:  = 20; 12 female) or a group performing either two (LOW:  = 20; 18 female) or four (HIGH:  = 20; 13 female) sessions/week of IHGT for 4 weeks. IHGT involved 4 × 2-min holds at 30% maximal voluntary contraction using the dominant hand.

View Article and Find Full Text PDF

Demographic aging and extended working lives have prompted interest in the physiological changes that occur with age, particularly in the lumbar spine. Age-related declines in muscle quality and intervertebral disc alterations may reduce muscular endurance, strength, and postural stability, potentially increasing the risk of musculoskeletal injuries in older workers. As experienced workers play an important role in addressing labor shortages, understanding the impact of age-related physiological changes on the biomechanical properties of the lumbar spine is key to ensure safe and sustainable employment for aging individuals.

View Article and Find Full Text PDF
Article Synopsis
  • This study explored how the anconeus muscle activates during gripping in individuals with Lateral Epicondyle Tendinopathy (LET), who often experience pain and weakened grip.
  • Participants with LET showed increased activation of the anconeus compared to forearm muscles during gripping, indicating a possible compensatory mechanism.
  • Understanding these changes in muscle activation can help explain the gripping difficulties associated with LET and may lead to better treatment strategies.
View Article and Find Full Text PDF

Background: The COVID-19 pandemic was a significant health risk and resulted in increased sickness absence during the pandemic. This study examines whether a history of COVID-19 infection is associated with a higher risk of subsequent sickness absence.

Methods: In this prospective cohort study, 32,124 public sector employees responded to a survey on COVID-19 infection and lifestyle factors in 2020 and were linked to sickness absence records before (2019) and after (2021-2022) the survey.

View Article and Find Full Text PDF

Dileucine ingestion, but not leucine, increases lower body strength and performance following resistance training: A double-blind, randomized, placebo-controlled trial.

PLoS One

December 2024

Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology and Health, Lindenwood University, St. Charles, Missouri, United States of America.

Background: The essential amino acid leucine (LEU) plays a crucial role in promoting resistance-training adaptations. Dileucine (DILEU), a LEU-LEU dipeptide, increases MPS rates, however its impact on resistance training outcomes remains unexplored. This study assessed the effects of DILEU supplementation on resistance training adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!