YAP1 is one of the most important effectors of the Hippo pathway and has crosstalk with other cancer promoting pathways. YAP1 contributes to cancer development in various ways that include promoting malignant phenotypes, expansion of cancer stem cells and drug resistance of cancer cells. Because pharmacologic or genetic inhibition of YAP1 suppresses tumor progression and increases the drug sensitivity, targeting YAP1 may open a fertile avenue for a novel therapeutic approach in relevant cancers. Recent enormous studies have established the efficacy of immunotherapy, and several immune checkpoint blockades are in clinical use or in the phase of development to treat various cancer types. Immunosuppression in the tumor microenvironment (TME) induced by cancer cells, immune cells and associated stromal cells promotes tumor progression and causes drug resistance. Accumulated evidences of scientific efforts from the last few years suggest that YAP1 influences macrophages, myeloid-derived suppressor cells and regulatory T-cells to facilitate immunosuppressive TME. Although the underlying mechanisms is not clearly discerned, it is evident that YAP1 activating pathways in different cellular components induce immunosuppressive TME. In this review, we summarize the evidences involved in the dual roles of YAP1 in cancer development and immunosuppression in the TME. We also discuss the possibility of YAP1 as a novel therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540999 | PMC |
http://dx.doi.org/10.1002/ijc.31561 | DOI Listing |
Int J Mol Sci
January 2025
Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan.
Microfluidic-based cell-stretching devices are vital for studying the molecular pathways involved in cellular responses to mechanobiological processes. Accurate evaluation of these responses requires detailed observation of cells cultured in this cell-stretching device. This study aimed to develop a method for preparing microscope slides to enable high-magnification imaging of cells in these devices.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy.
Cellular behavior is strongly influenced by mechanical signals in the surrounding microenvironment, along with external factors such as temperature fluctuations, changes in blood flow, and muscle activity, etc. These factors are key in shaping cellular states and can contribute to the development of various diseases. In the realm of rehabilitation physical therapies, therapeutic exercise and manual treatments, etc.
View Article and Find Full Text PDFHereditas
January 2025
Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, China.
Background: Discs large homolog 2 (DLG2) has been implicated in cancer development, yet its role in cervical cancer remains unclear. This study aims to explore the regulatory mechanism of DLG2 in cervical cancer and its clinical implications.
Methods: Quantitative reverse transcription polymerase chain reaction and western blotting assays were employed to detect RNA and protein expression, respectively.
Mol Biol Rep
January 2025
Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!