Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical-frequency synthesizers, which generate frequency-stable light from a single microwave-frequency reference, are revolutionizing ultrafast science and metrology, but their size, power requirement and cost need to be reduced if they are to be more widely used. Integrated-photonics microchips can be used in high-coherence applications, such as data transmission , highly optimized physical sensors and harnessing quantum states , to lower cost and increase efficiency and portability. Here we describe a method for synthesizing the absolute frequency of a lightwave signal, using integrated photonics to create a phase-coherent microwave-to-optical link. We use a heterogeneously integrated III-V/silicon tunable laser, which is guided by nonlinear frequency combs fabricated on separate silicon chips and pumped by off-chip lasers. The laser frequency output of our optical-frequency synthesizer can be programmed by a microwave clock across 4 terahertz near 1,550 nanometres (the telecommunications C-band) with 1 hertz resolution. Our measurements verify that the output of the synthesizer is exceptionally stable across this region (synthesis error of 7.7 × 10 or below). Any application of an optical-frequency source could benefit from the high-precision optical synthesis presented here. Leveraging high-volume semiconductor processing built around advanced materials could allow such low-cost, low-power and compact integrated-photonics devices to be widely used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-018-0065-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!