Earthquake-induced transformation of the lower crust.

Nature

Physics of Geological Processes (PGP), The Njord Centre, Department of Geosciences, University of Oslo, Oslo, Norway.

Published: April 2018

The structural and metamorphic evolution of the lower crust has direct effects on the lithospheric response to plate tectonic processes involved in orogeny, including subsidence of sedimentary basins, stability of deep mountain roots and extension of high-topography regions. Recent research shows that before orogeny most of the lower crust is dry, impermeable and mechanically strong . During an orogenic event, the evolution of the lower crust is controlled by infiltration of fluids along localized shear or fracture zones. In the Bergen Arcs of Western Norway, shear zones initiate as faults generated by lower-crustal earthquakes. Seismic slip in the dry lower crust requires stresses at a level that can only be sustained over short timescales or local weakening mechanisms. However, normal earthquake activity in the seismogenic zone produces stress pulses that drive aftershocks in the lower crust . Here we show that the volume of lower crust affected by such aftershocks is substantial and that fluid-driven associated metamorphic and structural transformations of the lower crust follow these earthquakes. This provides a 'top-down' effect on crustal geodynamics and connects processes operating at very different timescales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935234PMC
http://dx.doi.org/10.1038/s41586-018-0045-yDOI Listing

Publication Analysis

Top Keywords

lower crust
32
lower
8
crust
8
evolution lower
8
earthquake-induced transformation
4
transformation lower
4
crust structural
4
structural metamorphic
4
metamorphic evolution
4
crust direct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!