The measurement of the equilibrium contact angle (ECA) of a weakly evaporating sessile drop becomes very challenging when the temperatures are higher than ambient temperature. Since the ECA is a critical input parameter for numerical simulations of diabatic processes, it is relevant to know the variation of the ECA with the fluid and wall temperatures. Several research groups have studied the effect of temperature on ECA either experimentally, with direct measures, or numerically, using molecular dynamic simulations. However, there is some disagreement between the authors. In this paper two possible theoretical models are presented, describing how the ECA varies with the surface temperature. These two models (called Decreasing Trend Model and Unsymmetrical Trend Model, respectively) are compared with experimental measurements. Within the experimental errors, the equilibrium contact angle shows a decrease with increasing surface temperatures on the hydrophilic surface. Conversely the ECA appears approximately constant on hydrophobic surfaces for increasing wall temperatures. The two conclusions for practical applications for weakly evaporating conditions are that (i) the higher the ECA, the smaller is the effect of the surface temperature, (ii) a good evaluation of the decrease of the ECA with the surface temperature can be obtained by the proposed DTM approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917013 | PMC |
http://dx.doi.org/10.1038/s41598-018-24828-8 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University, Department of Macromolecular Science, 2205 Songhu Rd, 200438, Shanghai, CHINA.
Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background: The spatial resolution of new, photon counting detector (PCD) CT scanners is limited by the size of the focal spot. Smaller, brighter focal spots would melt the tungsten focal track of a conventional X-ray source.
Purpose: To propose focal spot multiplexing (FSM), an architecture to improve the power of small focal spots and thereby enable higher resolution clinical PCD CT.
Discov Nano
January 2025
Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology(A), Hyderabad, 500075, India.
Because of their uniform and regular channels, adjustable pore size, large surface area, controllable wall composition, high hydrothermal stability, ease of functional modification, and good accessibility of larger reactant molecules, mesoporous siliceous SBA-15 is of excellent catalyst carrier that is highly versatile and has been used extensively to prepare a variety of supported catalysts with ideal catalytic properties. In this study, we report the synthesis, characterization, and catalytic application of Cu-Ag/ SBA-15 nanoalloy catalysts towards the control of microorganisms in drinking water has been reported. The Cu-Ag/SBA-15 nanoalloy catalysts with different molar mass ratio of copper to silver (Cu:Ag = 1: 0, 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Languages and Cultures, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium.
Cuneiform tablets were a primary writing medium in the ancient Near East from the late fourth millennium BCE to the first century CE. Although these clay tablets were durable for daily use, prolonged burial over millennia has made them vulnerable to salt damage. Fluctuations in temperature and humidity cause the migration of salts to the surface of the tablets, damaging them and covering the inscriptions, making the text unreadable.
View Article and Find Full Text PDFNat Commun
January 2025
NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, China.
The discovery of high-temperature superconductivity in LaNiO under pressure has drawn great attention. However, consensus has not been reached on its pairing symmetry in theory. By combining density-functional-theory (DFT), maximally-localized-Wannier-function, and linearized gap equation with random-phase-approximation, we find that the pairing symmetry of LaNiO is d, if its DFT band structure is accurately reproduced by a downfolded bilayer two-orbital model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!