A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel role of autophagy-associated Pik3c3 gene in gonadal white adipose tissue browning in aged C57/Bl6 male mice. | LitMetric

Novel role of autophagy-associated Pik3c3 gene in gonadal white adipose tissue browning in aged C57/Bl6 male mice.

Aging (Albany NY)

Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Published: April 2018

Adipose tissue dysfunction is associated with inflammation, metabolic syndrome and other diseases in aging. Recent work has demonstrated that compromised autophagy activity in aging adipose tissue promotes ER stress responses, contributing to adipose tissue and systemic inflammation in aging. Phosphatidylinositol 3-kinase catalytic subunit type 3 (Pik3c3) is an 887 amino acid lipid kinase that regulates intracellular membrane trafficking and autophagy activity. To address the mechanistic link between autophagy and ER stress response in aging adipose tissue, we generated a line of adipose tissue-specific knock out (~mutant mice) with the (Fatty acid binding protein 4) promoter driven recombinase system. We found elevated ER stress response signaling with reduced autophagy activity without any significant change on adiposity or glucose tolerance in early life of Pik3c3 mutant mice. Interestingly, middle- and old-aged mutant mice exhibited improved glucose tolerance (GTT) and reduced adiposity compared to age and sex-matched littermates. In addition, adipose tissue-specific mutants display reduced expression of adiposity-associated genes with the signature of adipose tissue browning phenotypes in old age. Overall, the results suggest that altered adipose tissue characteristics due to autophagy inhibition early in life has beneficial effects that promote adipose tissue browning and improves glucose tolerance in late-life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940123PMC
http://dx.doi.org/10.18632/aging.101426DOI Listing

Publication Analysis

Top Keywords

adipose tissue
32
tissue browning
12
autophagy activity
12
glucose tolerance
12
adipose
10
tissue
8
aging adipose
8
stress response
8
adipose tissue-specific
8
early life
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!