Successful drug treatment for tuberculosis (TB) depends on the unique contributions of its component drugs. Drug resistance poses a threat to the efficacy of individual drugs and the regimens to which they contribute. Biologically and chemically validated targets capable of replacing individual components of current TB chemotherapy are a major unmet need in TB drug development. We demonstrate that chemical inhibition of the bacterial biotin protein ligase (BPL) with the inhibitor Bio-AMS (5'-[-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine) killed (), the bacterial pathogen causing TB. We also show that genetic silencing of BPL eliminated the pathogen efficiently from mice during acute and chronic infection with Partial chemical inactivation of BPL increased the potency of two first-line drugs, rifampicin and ethambutol, and genetic interference with protein biotinylation accelerated clearance of from mouse lungs and spleens by rifampicin. These studies validate BPL as a potential drug target that could serve as an alternate frontline target in the development of new drugs against .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151865PMC
http://dx.doi.org/10.1126/scitranslmed.aal1803DOI Listing

Publication Analysis

Top Keywords

protein biotinylation
8
targeting protein
4
biotinylation enhances
4
enhances tuberculosis
4
tuberculosis chemotherapy
4
chemotherapy successful
4
drug
4
successful drug
4
drug treatment
4
treatment tuberculosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!