In this study we investigated nanoliposome as an approach to tailoring the pharmacology of cerivastatin as a disease-modifying drug for pulmonary arterial hypertension (PAH). Cerivastatin encapsulated liposomes with an average diameter of 98 ± 27 nm were generated by a thin film and freeze-thaw process. The nanoliposomes demonstrated sustained drug-release kinetics in vitro and inhibited proliferation of pulmonary artery (PA) smooth muscle cells with significantly less cellular cytotoxicity as compared with free cerivastatin. When delivered by inhalation to a rat model of monocrotaline-induced PAH, cerivastatin significantly reduced PA pressure from 55.13 ± 9.82 to 35.56 ± 6.59 mm Hg ( < 0.001) and diminished PA wall thickening. Echocardiography showed that cerivastatin significantly reduced right ventricle thickening (monocrotaline: 0.34 ± 0.02 cm vs. cerivastatin: 0.26 ± 0.02 cm; < 0.001) and increased PA acceleration time (monocrotaline: 13.98 ± 1.14 milliseconds vs. cerivastatin: 21.07 ± 2.80 milliseconds; < 0.001). Nanoliposomal cerivastatin was equally effective or slightly better than cerivastatin in reducing PA pressure (monocrotaline: 67.06 ± 13.64 mm Hg; cerivastatin: 46.31 ± 7.64 mm Hg vs. liposomal cerivastatin: 37.32 ± 9.50 mm Hg) and improving parameters of right ventricular function as measured by increasing PA acceleration time (monocrotaline: 24.68 ± 3.92 milliseconds; cerivastatin: 32.59 ± 6.10 milliseconds vs. liposomal cerivastatin: 34.96 ± 7.51 milliseconds). More importantly, the rate and magnitude of toxic cerivastatin metabolite lactone generation from the intratracheally administered nanoliposomes was significantly lower as compared with intravenously administered free cerivastatin. These studies show that nanoliposome encapsulation improved in vitro and in vivo pharmacologic and safety profile of cerivastatin and may represent a safer approach as a disease-modifying therapy for PAH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987999 | PMC |
http://dx.doi.org/10.1124/jpet.118.247643 | DOI Listing |
Reprod Toxicol
December 2024
Department of Biological Sciences, Alabama State University, Montgomery, AL, United States; Center For NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States. Electronic address:
Cholesterol plays pivotal cellular functions ranging from maintaining membrane fluidity to regulating cell-cell signaling. High cholesterol causes cardiovascular diseases, low cholesterol is linked to neuropsychiatric disorders, and inborn errors of cholesterol synthesis cause multisystem malformation syndromes. Statins lower cholesterol levels by inhibiting the first, rate-limiting reaction of the cholesterol biosynthesis pathway catalyzed by hydroxymethyl-glutaryl-Coenzyme A reductase (HMGCR).
View Article and Find Full Text PDFDrug Metab Dispos
May 2024
Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California.
Extrapolating in vivo hepatic clearance from in vitro uptake data is a known challenge, especially for organic anion-transporting polypeptide transporter (OATP) substrates, and the well-stirred model (WSM) commonly yields systematic underpredictions for those anionic drugs, hypothetically due to "albumin-mediated hepatic drug uptake". In the present study, we demonstrate that the WSM incorporating the dynamic free fraction ( ), a measure of drug protein binding affinity, performs reasonably well in predicting hepatic clearance of OATP substrates. For a selection of anionic drugs, including atorvastatin, fluvastatin, pravastatin, rosuvastatin, pitavastatin, cerivastatin, and repaglinide, this dynamic well-stirred model (dWSM) correctly predicts hepatic plasma clearance within 2-fold error for six out of seven OATP substrates examined.
View Article and Find Full Text PDFBasic Res Cardiol
April 2024
Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
Statins are effective drugs in reducing cardiovascular morbidity and mortality by inhibiting cholesterol synthesis. These effects are primarily beneficial for the patient's vascular system. A significant number of statin users suffer from muscle complaints probably due to mitochondrial dysfunction, a mechanism that has recently been elucidated.
View Article and Find Full Text PDFClin Pharmacokinet
January 2024
Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo Kyotanabe-shi, Kyoto, 610-0395, Japan.
Background And Objective: Early investigations into drug-drug interactions (DDIs) involving cytochrome P450 2C8 (CYP2C8) have highlighted the complexity of interactions between CYP2C8 substrate drugs, including montelukast, desloratadine, pioglitazone, repaglinide, and cerivastatin (the latter two being OATP1B1 substrates), and standardized CYP2C8 inhibitors such as clopidogrel (Clop) and gemfibrozil (Gem). These interactions have proven challenging to predict based solely on simple CYP inhibition. A hypothesis has emerged suggesting that these substrate drugs first distribute to UDP-glucuronosyltransferase (UGT) before undergoing oxidation by CYP2C8, resulting in bidirectional elimination.
View Article and Find Full Text PDFThyroid
December 2023
Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
In Graves' orbitopathy (GO), localized orbital inflammation within the fixed orbit often leads to a fibrotic phenotype resulting in restrictive myopathy or refractory proptosis. However, the molecular pathways related to the transition from inflammation to fibrosis in GO are less understood. Yes-associated protein (YAP) and its homolog, transcriptional coactivator with PDZ-binding motif (TAZ; a Hippo pathway effector), are critical mechanosensors of mechanical stimuli and activate signaling cascades for cell proliferation, differentiation, and transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!