Our recent articles have reported that increased miR-21-5p in brain after traumatic brain injury (TBI) could improve the neurological outcome through alleviating blood-brain barrier (BBB) damage. miR-21-3p is another mature miRNA derived from pre-miR-21 after Dicer Procession other than miR-21-5p. Its roles in various diseases, such as tumors and myocardial disease, aroused great interest for research in recent years. To further explore the function and underlying mechanism of miR-21, especially miR-21-3p, in regulating the pathological development of BBB damage after TBI, we designed this research and focused on studying the impact of miR-21-3p on apoptosis and inflammation in brain microvascular endothelial cells (BMVECs), the major cellular component of BBB. We performed controlled cortical impact on mouse brain and employed the oxygen glucose deprivation/reoxygenation (OGD)-treated bEnd.3 cells injury model. We found that the miR-21-3p level in BMVECs from injured cerebral cortex of controlled cortical impact (CCI) mice and bEnd.3 cells with OGD treatment were both increased after injury. For in vitro experiments, downregulation on the miR-21-3p level by transfecting miR-21-3p antagomir in cultured cells alleviated OGD-induced BBB damage, characterized by decreased BBB leakage and increased expression of tight junction proteins. Besides, miR-21-3p antagomir could suppress cell death by anti-apoptosis and control inflammatory response by inhibiting the activity of NF-κB signaling. Using luciferase reporter assay and a MAT2B-silenced shRNA vector, we further proved that miR-21-3p exerted the above functions through targeting MAT2B. In addition, in vivo experiments also confirmed that intracerebroventricular infusion of miR-21-3p antagomir could alleviate BBB leakage after TBI. It reduced Evans Blue extravasation and promoted the expression of tight junction proteins, thus contributed to improve the neurological outcome of CCI mice. Taken together, increased miR-21-3p in BMVECs after TBI was bad for restoration of injured BBB. Downregulation on the miR-21-3p level in injured brain could be a promising therapeutic strategy for BBB damage after TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.2018.5728 | DOI Listing |
Adv Healthc Mater
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
It is crucial to inhibit the neuroinflammation response as it is a prominent factor contributing to the pathogenesis of neurodegenerative disorders. However, the limited development of neuroinflammation models dramatically hinders the efficiency of nanomedicine discovery. In recent years, the optically transparent zebrafish model provided unique advantages for imaging of the whole body, allowing the progression of the disease to be visualized.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States. Electronic address:
Intracortical microelectrodes (IMEs) are essential for neural signal acquisition in neuroscience and brain-machine interface (BMI) systems, aiding patients with neurological disorders, paralysis, and amputations. However, IMEs often fail to maintain robust signal quality over time, partly due to neuroinflammation caused by vascular damage during insertion. Platelet-inspired nanoparticles (PIN), which possess injury-targeting functions, mimic the adhesion and aggregation of active platelets through conjugated collagen-binding peptides (CBP), von Willebrand Factor-binding peptides (VBP), and fibrinogen-mimetic peptides (FMP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!