Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator.

Sensors (Basel)

Laboratory of Research in Automatic Control-LA.R.A, National Engineering School of Tunis (ENIT), University of Tunis El Manar, BP 37, Le Belvédère, Tunis 1002, Tunisia.

Published: April 2018

Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982424PMC
http://dx.doi.org/10.3390/s18051317DOI Listing

Publication Analysis

Top Keywords

artificial neural
12
power
9
neural networks
8
angle control
8
tidal stream
8
stream generator
8
tidal currents
8
generated power
8
rotational speed
8
pitch angle
8

Similar Publications

Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.

Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.

View Article and Find Full Text PDF

This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Gender-Equity Model for Liver Allocation using Artificial Intelligence (GEMA-AI) for waiting list liver transplant prioritization.

Clin Gastroenterol Hepatol

January 2025

Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain. Campus Universitario de Rabanales, Albert Einstein Building. Ctra. N-IV, Km. 396. 14071, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Av. Menéndez Pidal, s/n, Poniente Sur, 14004 Córdoba, Spain.

Background & Aims: We aimed to develop and validate an artificial intelligence score (GEMA-AI) to predict liver transplant (LT) waiting list outcomes using the same input variables contained in existing models.

Methods: Cohort study including adult LT candidates enlisted in the United Kingdom (2010-2020) for model training and internal validation, and in Australia (1998-2020) for external validation. GEMA-AI combined international normalized ratio, bilirubin, sodium, and the Royal Free Glomerular Filtration Rate in an explainable Artificial Neural Network.

View Article and Find Full Text PDF

The application of design of experiments and artificial neural networks in the evaluation of the impact of acidic conditions on cloud point extraction.

J Chromatogr A

January 2025

Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, Rokietnicka 3 Street, Poznań 60-806, Poland. Electronic address:

This study aimed to analyze the impact of acidic conditions on the recovery of ciprofloxacin and levofloxacin for cloud point extraction with the Design of Experiments and Artificial Neural Networks. The design included 27 experiments featuring three repetitions of the central point for both drugs. The tested parameters included Triton X-114 concentration, HCl concentration, NaCl concentration, and incubation temperature, which were coded at five levels.

View Article and Find Full Text PDF

Artificial Neural Networks (ANNs) aim at mimicking information processing in biological networks. In cognitive neuroscience, graph modeling is a powerful framework widely used to study brain structural and functional connectivity. Yet, the extension of graph modeling to ANNs has been poorly explored especially in terms of functional connectivity (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!