Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982424 | PMC |
http://dx.doi.org/10.3390/s18051317 | DOI Listing |
Curr Eye Res
January 2025
Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.
Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.
Sci Rep
January 2025
Amity Institute of Environmental Sciences (AIES), Amity University Uttar Pradesh (AUUP), Sector-125, Gautam Budh Nagar, Noida, 201313, India.
This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFClin Gastroenterol Hepatol
January 2025
Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain. Campus Universitario de Rabanales, Albert Einstein Building. Ctra. N-IV, Km. 396. 14071, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Av. Menéndez Pidal, s/n, Poniente Sur, 14004 Córdoba, Spain.
Background & Aims: We aimed to develop and validate an artificial intelligence score (GEMA-AI) to predict liver transplant (LT) waiting list outcomes using the same input variables contained in existing models.
Methods: Cohort study including adult LT candidates enlisted in the United Kingdom (2010-2020) for model training and internal validation, and in Australia (1998-2020) for external validation. GEMA-AI combined international normalized ratio, bilirubin, sodium, and the Royal Free Glomerular Filtration Rate in an explainable Artificial Neural Network.
J Chromatogr A
January 2025
Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, Rokietnicka 3 Street, Poznań 60-806, Poland. Electronic address:
This study aimed to analyze the impact of acidic conditions on the recovery of ciprofloxacin and levofloxacin for cloud point extraction with the Design of Experiments and Artificial Neural Networks. The design included 27 experiments featuring three repetitions of the central point for both drugs. The tested parameters included Triton X-114 concentration, HCl concentration, NaCl concentration, and incubation temperature, which were coded at five levels.
View Article and Find Full Text PDFNeural Netw
January 2025
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France.
Artificial Neural Networks (ANNs) aim at mimicking information processing in biological networks. In cognitive neuroscience, graph modeling is a powerful framework widely used to study brain structural and functional connectivity. Yet, the extension of graph modeling to ANNs has been poorly explored especially in terms of functional connectivity (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!