Efficient Computational Design of a Scaffold for Cartilage Cell Regeneration.

Bioengineering (Basel)

Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark.

Published: April 2018

Due to the sensitivity of mammalian cell cultures, understanding the influence of operating conditions during a tissue generation procedure is crucial. In this regard, a detailed study of scaffold based cell culture under a perfusion flow is presented with the aid of mathematical modelling and computational fluid dynamics (CFD). With respect to the complexity of the case study, this work focuses solely on the effect of nutrient and metabolite concentrations, and the possible influence of fluid-induced shear stress on a targeted cell (cartilage) culture. The simulation set up gives the possibility of predicting the cell culture behavior under various operating conditions and scaffold designs. Thereby, the exploitation of the predictive simulation into a newly developed stochastic routine provides the opportunity of exploring improved scaffold geometry designs. This approach was applied on a common type of fibrous structure in order to increase the process efficiencies compared with the regular used formats. The suggested topology supplies a larger effective surface for cell attachment compared to the reference design while the level of shear stress is kept at the positive range of effect. Moreover, significant improvement of mass transfer is predicted for the suggested topology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027378PMC
http://dx.doi.org/10.3390/bioengineering5020033DOI Listing

Publication Analysis

Top Keywords

operating conditions
8
cell culture
8
shear stress
8
suggested topology
8
cell
6
efficient computational
4
computational design
4
scaffold
4
design scaffold
4
scaffold cartilage
4

Similar Publications

Mechanisms of Homoarginine: Looking Beyond Clinical Outcomes.

Acta Physiol (Oxf)

February 2025

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.

Purpose: Homoarginine (hArg) is an arginine metabolite that has been known for years, but its physiological role in the body remains poorly understood. For instance, it is well known that high hArg concentrations in the blood are protective against several disease states, yet the mechanisms behind these health benefits are unclear. This review compiles what is known about hArg, namely its synthetic pathways, its role in different diseases and conditions, and its proposed mechanisms of action in humans and experimental animals.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a devastating disease of the neonatal gastrointestinal tract. Volatile organic compounds (VOCs), odoriferous compounds released as a byproduct of bacterial metabolism, can be used as a proxy for gut health. We hypothesized that patients with NEC would have different microbial profiles and elicit different VOC signatures as assessed by gas chromatography/mass spectrometry (GC/MS) or an electronic nose compared to controls.

View Article and Find Full Text PDF

EEfficient methods for isolating N-glycans are essential to understanding the functions and characteristics of the entire N-glycome. Enzymatic release using PNGaseF is the most effective approach for releasing mammalian N-glycans for analytical purposes. However, the use of PNGaseF for preparative N-glycan isolation is precluded due to the enzyme's cost and limited stability.

View Article and Find Full Text PDF

Estrogen significantly impacts women's health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce.

View Article and Find Full Text PDF

Introduction: Neurogenic bladder dysfunction is a prevalent condition characterized by impaired bladder control resulting from neurological conditions, for example, spinal cord injury or traumatic brain injury (TBI). Detrusor overactivity is a typical symptom of central nervous system damage. A lesion affecting the pontine neural network typically results in loss of tonic inhibition exerted by the pontine micturition center and causes involuntary detrusor contractions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!