We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982504 | PMC |
http://dx.doi.org/10.3390/s18051304 | DOI Listing |
Sci Rep
January 2025
Heilongjiang Ground Pressure and Gas Control in Deep Mining Key Laboratory, Heilongjiang University of Science and Technology, Harbin, 15002, China.
When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via G. La Masa 1, 20156 Milano, Italy.
In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.
View Article and Find Full Text PDFSensors (Basel)
January 2025
China Railway Seventh Group Co., Ltd., Zhengzhou 450016, China.
This paper investigates the use of the BOTDA (Brillouin Optical Time-Domain Analysis) technology to monitor a large-scale bored pile wall in the field. Distributed fiber optic sensors (DFOSs) were deployed to measure internal temperature and strain changes during cement grouting, hardening, and excavation-induced deformation of a secant pile wall. The study details the geological conditions and DFOS installation process.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China.
Through the ferrite single-phase parameters of M50 bearing steel obtained based on nanoindentation experiments and the representative volume element (RVE) model established based on the real microstructure of M50, this paper established a multiscale finite element model for the cold ring rolling of M50 and verified its accuracy. The macroscale and mesoscale flow behaviors of the ring during the cold rolling deformation process were examined and explained. The macroscopic flow behavior demonstrated that the stress distribution was uniform following rolling.
View Article and Find Full Text PDFHeliyon
March 2024
Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
Foot-and-mouth disease virus (FMDV), the causative agent of the foot-and-mouth disease of cattle population possesses a rapid evolutionary rate. In Bangladesh, the first circulation of the O/ME-SA/SA-2018 lineage as a novel sublineage, MYMBD21 was reported from our laboratory. The first whole genome sequence of an isolate, BAN/MY/My-466/2021 (shortly named My-466) of the SA-2018 lineage is characterized and represented in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!