High-frequency oscillatory ventilation (HFOV) has been proposed as an alternative method of invasive ventilation in immature infants to prevent ventilator lung injury. To better control the size of the high-frequency tidal volume and to prevent large tidal volumes, a new strategy of controlling the tidal volume during HFOV (VThf) has been developed, HFOV-volume guarantee (VG). Data from preclinical, neonatal animal studies in normal and surfactant-depleted lungs have demonstrated the feasibility of this technique to directly control the VThf in the normal compliance and low compliance situations. Different I:E ratios also can modify the effect of CO washout during HFOV combined with VG in a different way as without the VG modality. Finally, clinical use of this technique in newborn infants has demonstrated the possibility of using very high frequency combined with constant very low VThf to decrease the risk of lung trauma related to the ventilator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0038-1637763 | DOI Listing |
Development
January 2025
Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Oscillatory dynamics and their modulation are crucial for cellular decision-making; however, analysing these dynamics remains challenging. Here, we present a tool that combines the light-activated adenylate cyclase mPAC with the cAMP biosensor Pink Flamindo, enabling precise manipulation and real-time monitoring of cAMP oscillation frequencies in Dictyostelium. High-frequency modulation of cAMP oscillations induced cell aggregation and multicellular formation, even at low cell densities, such as a few dozen cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician Kulakov V.I., 117997 Moscow, Russia.
Despite the increasing number of placenta accreta spectrum (PAS) cases in recent years, its impact on neonatal outcomes and respiratory morbidity, as well as the underlying pathogenetic mechanism, has not yet been extensively studied. Moreover, no study has yet demonstrated the effectiveness of antenatal corticosteroid therapy (CT) for the prevention of respiratory distress syndrome (RDS) in newborns of mothers with PAS at the molecular level. In this regard, microRNA (miRNA) profiling by small RNA deep sequencing and quantitative real-time PCR was performed on 160 blood plasma samples from preterm infants (gestational age: 33-36 weeks) and their mothers who had been diagnosed with or without PAS depending on the timing of the antenatal RDS prophylaxis.
View Article and Find Full Text PDFAndes Pediatr
August 2024
Facultad de Salud, Universidad Santiago de Cali, Cali, Colombia.
Unlabelled: High-frequency oscillatory ventilation with volume guarantee (HFOV-VG) is a ventilatory mode that controls small tidal volumes at supraphysiological frequencies, potentially beneficial for preterm infants with respiratory distress syndrome (RDS).
Objective: To identify the physiological and clinical effects of HFOV-VG in preterm newborns with RDS, compared with conventional HFOV.
Method: Exploratory review of studies published between 2019 and 2023 of preterm newborns from 23 to 36 weeks of gestation with RDS, weighing ≥ 450g, with invasive HFOV support, using PRISMA flow diagram.
Sci Rep
January 2025
School of Electrical Engineering, Southeast University, Nanjing, 210096, China.
In renewable power systems, the interaction between generators, power electronic devices, and the grid has led to frequent high-frequency oscillation (HFO) events. These events can result in significant generation losses and pose serious threats to system stability. Therefore, the rapid and accurate HFO parameter estimation is crucial for early warning and effective mitigation of HFO.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC, Australia.
By virtue of applying small tidal volumes, high-frequency ventilation is advocated as a method of minimizing ventilator-induced lung injury. Lung protective benefits are established in infants, but not in other patient cohorts. Efforts to improve and extend the lung protection potential should consider how fundamental modes of gas transport can be exploited to minimize harmful tidal volumes while maintaining or improving ventilation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!