Planarian flatworms possess pluripotent stem cells (neoblasts) that are able to differentiate into all cell types that constitute the adult body plan. Consequently, planarians possess remarkable regenerative capabilities. Transcriptomic studies have revealed that gene expression is coordinated to maintain neoblast pluripotency, and ensure correct lineage specification during differentiation. But as yet they have not revealed how this regulation of expression is controlled. In this review, we propose that planarians represent a unique and effective system to study the epigenetic regulation of these processes in an in vivo context. We consolidate evidence suggesting that although DNA methylation is likely present in some flatworm lineages, it does not regulate neoblast function in Schmidtea mediterranea. A number of phenotypic studies have documented the role of histone modification and chromatin remodelling complexes in regulating distinct neoblast processes, and we focus on four important examples of planarian epigenetic regulators: Nucleosome Remodeling Deacetylase (NuRD) complex, Polycomb Repressive Complex (PRC), the SET1/MLL methyltransferases, and the nuclear PIWI/piRNA complex. Given the recent advent of ChIP-seq in planarians, we propose future avenues of research that will identify the genomic targets of these complexes allowing for a clearer picture of how neoblast processes are coordinated at the epigenetic level. These insights into neoblast biology may be directly relevant to mammalian stem cells and disease. The unique biology of planarians will also allow us to investigate how extracellular signals feed into epigenetic regulatory networks to govern concerted neoblast responses during regenerative polarity, tissue patterning, and remodelling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2018.04.007DOI Listing

Publication Analysis

Top Keywords

planarian flatworms
8
epigenetic regulation
8
stem cells
8
neoblast processes
8
neoblast
6
epigenetic
5
flatworms model
4
model system
4
system understanding
4
understanding epigenetic
4

Similar Publications

Mitochondrial dynamics govern whole-body regeneration through stem cell pluripotency and mitonuclear balance.

Nat Commun

December 2024

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.

Tissue regeneration is a complex process involving large changes in cell proliferation, fate determination, and differentiation. Mitochondrial dynamics and metabolism play a crucial role in development and wound repair, but their function in large-scale regeneration remains poorly understood. Planarians offer an excellent model to investigate this process due to their remarkable regenerative abilities.

View Article and Find Full Text PDF

Taurine, a normal dietary component that is found in many tissues, is considered important for a number of physiological processes. It is thought to play a particular role in eye development and in the maturation of both the muscular and nervous systems, leading to its suggested use as a therapeutic for Alzheimer's and Parkinson's diseases. Taurine increases metabolism and has also been touted as a weight loss aid.

View Article and Find Full Text PDF
Article Synopsis
  • Restoring nerve injury in humans is challenging, especially in the central nervous system (CNS), where factors like glial scars hinder regeneration compared to the peripheral nervous system (PNS), which relies on Schwann cells for support.
  • Unlike humans, some species like axolotls and planarians can regenerate their nervous systems thanks to abundant pluripotent stem cells that can differentiate into various cell types.
  • Understanding the molecular pathways of these regenerating species may provide insights and new strategies for improving nerve regeneration therapies in humans.
View Article and Find Full Text PDF

Fibrillarin homologs regulate translation in divergent cell lineages during planarian homeostasis and regeneration.

EMBO J

December 2024

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.

Tissue homeostasis and regeneration involve complex cellular changes. The role of rRNA modification-dependent translational regulation in these processes remains largely unknown. Planarians, renowned for their ability to undergo remarkable tissue regeneration, provide an ideal model for the analysis of differential rRNA regulation in diverse cell types during tissue homeostasis and regeneration.

View Article and Find Full Text PDF

The planarian Schmidtea mediterranea shows nutrient-dependent whole-body plasticity. Starvation leads to body size reduction, while feeding triggers growth. The balance of cell proliferation and cell death controls cell number, driving organismal body size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!