Sensory processing is regulated by the coordinated excitation and inhibition of neurons in neuronal circuits. The analysis of neuronal activities has greatly benefited from the recent development of genetically encoded Ca2+ indicators (GECIs). These molecules change their fluorescence intensities or colours in response to changing levels of Ca2+ and can, therefore, be used to sensitively monitor intracellular Ca2+ concentration, which enables the detection of neuronal excitation, including action potentials. These GECIs were developed to monitor increases in Ca2+ concentration; therefore, neuronal inhibition cannot be sensitively detected by these GECIs. To overcome this difficulty, we hypothesised that an inverse-type of GECI, whose fluorescence intensity increases as Ca2+ levels decrease, could sensitively monitor reducing intracellular Ca2+ concentrations. We, therefore, developed a Ca2+ indicator named inverse-pericam 2.0 (IP2.0) whose fluorescent intensity decreases 25-fold upon Ca2+ binding in vitro. Using IP2.0, we successfully detected putative neuronal inhibition by monitoring the decrease in intracellular Ca2+ concentration in AWCON and ASEL neurons in Caenorhabditis elegans. Therefore, IP2.0 is a useful tool for studying neuronal inhibition and for the detailed analysis of neuronal activities in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918796PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194707PLOS

Publication Analysis

Top Keywords

neuronal inhibition
16
intracellular ca2+
12
ca2+ concentration
12
ca2+
11
ca2+ indicator
8
neuronal
8
putative neuronal
8
caenorhabditis elegans
8
analysis neuronal
8
neuronal activities
8

Similar Publications

Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.

View Article and Find Full Text PDF

Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions.

View Article and Find Full Text PDF

Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity.

Cell Res

January 2025

Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.

Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin.

View Article and Find Full Text PDF

Ferroptosis is one of the cell death programs occurring after spinal cord injury (SCI) and is driven by iron-dependent phospholipid peroxidation. However, little is known about its underlying regulation mechanism. The present study demonstrated that lipid peroxidation was promoted in patients with SCI.

View Article and Find Full Text PDF

To ensure their survival, animals must be able to respond adaptively to threats within their environment. However, the precise neural circuit mechanisms that underlie flexible defensive behaviors remain poorly understood. Using neuronal manipulations, machine learning-based behavioral detection, electron microscopy (EM) connectomics and calcium imaging in Drosophila larvae, we map second-order interneurons that are differentially involved in the competition between defensive actions in response to competing aversive cues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!