We study the double Gamow-Teller (DGT) strength distribution of ^{48}Ca with state-of-the-art large-scale nuclear shell model calculations. Our analysis shows that the centroid energy of the DGT giant resonance depends mostly on the isovector pairing interaction, while the resonance width is more sensitive to isoscalar pairing. Pairing correlations are also key in neutrinoless ββ (0νββ) decay. We find a simple relation between the centroid energy of the ^{48}Ca DGT giant resonance and the 0νββ decay nuclear matrix element. More generally, we observe a very good linear correlation between the DGT transition to the ground state of the final nucleus and the 0νββ decay matrix element. The correlation, which originates on the dominant short-range character of both transitions, extends to heavier systems including several ββ emitters and also holds in energy-density functional results. Our findings suggest that DGT experiments can be a very valuable tool to obtain information on the value of 0νββ decay nuclear matrix elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.142502 | DOI Listing |
J Hand Surg Am
January 2025
Hand and Upper Extremity Division of Plastic and Reconstructive Surgery, University of California Davis, Sacramento, CA.
Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFSci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China. Electronic address:
Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO) via the solution casting method, with a CMC:NaClO ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO released by the film within 7 days.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States.
Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!