A beam containing a substantial component of both the J^{π}=5^{+}, T_{1/2}=162  ns isomeric state of ^{18}F and its 1^{+}, 109.77-min ground state is utilized to study members of the ground-state rotational band in ^{19}F through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2^{+} band-terminating state. The agreement between shell-model calculations using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.120.122503DOI Listing

Publication Analysis

Top Keywords

probing single-particle
4
single-particle character
4
character rotational
4
rotational states
4
states ^{19}f
4
^{19}f short-lived
4
short-lived isomeric
4
isomeric beam
4
beam beam
4
beam substantial
4

Similar Publications

UV-vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10 probed molecules.

View Article and Find Full Text PDF
Article Synopsis
  • Variance in optical mesoscopic probes limits applications, especially as smaller probes show greater relative variance.
  • Specific viral protein cages, like the murine polyoma virus, can assemble efficiently and accurately, minimizing statistical fluctuations due to quality control.
  • An approach leveraging this assembly results in multichromophore particles that produce brighter, more consistent fluorescence than existing fluorescent nanosphere probes, validated by mass spectrometry and fluorescence microscopy.
View Article and Find Full Text PDF

DNA Tetrahedron-enhanced single-particle counting integrated with cascaded CRISPR Program for ultrasensitive dual RNAs logic sensing.

J Colloid Interface Sci

December 2024

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.

CRISPR-Cas-based technology, emerging as a leading platform for molecular assays, has been extensively researched and applied in bioanalysis. However, achieving simultaneous and highly sensitive detection of multiple nucleic acid targets remains a significant challenge for most current CRISPR-Cas systems. Herein, a CRISPR Cas12a based calibratable single particle counting-mediated biosensor was constructed for dual RNAs logic and ultra-sensitive detection in one tube based on DNA Tetrahedron (DTN)-interface supported fluorescent particle probes coupled with a novel synergistic cascaded strategy between CRISPR Cas13a system and strand displacement amplification (SDA).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate a myriad of biological processes and thus have been regarded as useful biomarkers in biomedical research and clinical diagnosis. The specific and highly sensitive detection of miRNAs is of significant importance. Herein, a sensitive and rapid dual-amplification elemental labeling single-particle inductively coupled plasma-mass spectrometry (spICP-MS) analytical method based on strand displacement amplification (SDA) and CRISPR/Cas12a was developed for miRNA-21 detection.

View Article and Find Full Text PDF

Single-particle photoluminescence measurements have been extensively utilized to investigate the charge carrier dynamics in quantum dots (QDs). Among these techniques, single dot blinking studies are effective for probing relatively slower processes with timescales >10 ms, whereas fluorescence correlation spectroscopy (FCS) studies are suited for recording faster processes with timescales typically <1 ms. In this study, we utilized scanning FCS (sFCS) to bridge the ms gap, thereby enabling the tracking of carrier dynamics across an extended temporal window ranging from μs to subsecond.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!